Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 194: 96-104, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971217

RESUMO

Understanding of the mechanisms contributing to the increased maternal susceptibility for major adverse cardiovascular events in the postpartum period remains poor. Accordingly, this study tested the hypothesis that the balance between coronary blood flow and myocardial metabolism is compromised during the puerperium period (35-45 days post-delivery) in swine. Systemic and coronary hemodynamic responses were assessed in anesthetized, open-chest control (nonpregnant) and puerperium/postpartum swine at baseline and in response to intravenous infusion of dobutamine (1-30 µg/kg/min). Blood pressure and heart rate were lower in postpartum swine at baseline and in response to dobutamine (P < 0.05). Coronary blood flow and myocardial oxygen delivery were significantly diminished at baseline in postpartum swine (P < 0.001), which corresponded with ∼35% reduction in myocardial oxygen consumption (MVO2) (P < 0.001). Postpartum swine displayed enhanced retrograde coronary flow, larger cardiomyocyte area (P < 0.01) and marked capillary rarefaction (P < 0.01). The relationship between coronary blood flow and heart rate (P < 0.05) or MVO2 (P < 0.001) was significantly diminished in postpartum swine as dobutamine increased MVO2 up to ∼135% in both groups. This reduction in myocardial perfusion was associated with decreases in myocardial lactate uptake (P < 0.001), increases in coronary venous PCO2 (P < 0.01) and decreased coronary venous pH (P < 0.01). These findings suggest an impaired balance between coronary blood flow and myocardial metabolism could contribute to the increased incidence of maternal myocardial ischemia and premature death in the postpartum period.


Assuntos
Circulação Coronária , Miocárdio , Período Pós-Parto , Animais , Feminino , Suínos , Miocárdio/metabolismo , Circulação Coronária/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Dobutamina/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Gravidez
2.
Am J Physiol Cell Physiol ; 326(6): C1776-C1788, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738304

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) is an indicator of cell death, inflammation, and oxidative stress. ccf-mtDNA in pregnancies with placental dysfunction differs from that in healthy pregnancies, and the direction of this difference depends on gestational age and method of mtDNA quantification. Reactive oxygen species (ROS) trigger release of mtDNA, yet it is unknown whether trophoblast cells release mtDNA in response to oxidative stress, a common feature of pregnancies with placental pathology. We hypothesized that oxidative stress would induce cell death and release of mtDNA from trophoblast cells. BeWo cells were treated with antimycin A (10-320 µM) or rotenone (0.2-50 µM) to induce oxidative stress. A multiplex real-time quantitative PCR (qPCR) assay was used to quantify mtDNA and nuclear DNA in membrane-bound, non-membrane-bound, and vesicle-bound forms in cell culture supernatants and cell lysates. Treatment with antimycin A increased ROS (P < 0.0001), induced cell necrosis (P = 0.0004) but not apoptosis (P = 0.6471), and was positively associated with release of membrane-bound and non-membrane-bound mtDNA (P < 0.0001). Antimycin A increased mtDNA content in exosome-like extracellular vesicles (vesicle-bound form; P = 0.0019) and reduced autophagy marker expression (LC3A/B, P = 0.0002; p62, P < 0.001). Rotenone treatment did not influence mtDNA release or cell death (P > 0.05). Oxidative stress induces release of mtDNA into the extracellular space and causes nonapoptotic cell death and a reduction in autophagy markers in BeWo cells, an established in vitro model of human trophoblast cells. Intersection between autophagy and necrosis may mediate the release of mtDNA from the placenta in pregnancies exposed to oxidative stress.NEW & NOTEWORTHY This is the first study to test whether trophoblast cells release mitochondrial (mt)DNA in response to oxidative stress and to identify mechanisms of release and biological forms of mtDNA from this cellular type. This research identifies potential cellular mechanisms that can be used in future investigations to establish the source and biomarker potential of circulating mtDNA in preclinical experimental models and humans.


Assuntos
Antimicina A , DNA Mitocondrial , Espaço Extracelular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Trofoblastos , Humanos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Espaço Extracelular/metabolismo , Antimicina A/farmacologia , Rotenona/farmacologia , Placenta/metabolismo , Placenta/efeitos dos fármacos , Placenta/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Necrose , Linhagem Celular , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
3.
Am J Physiol Heart Circ Physiol ; 327(2): H417-H432, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847756

RESUMO

The maternal cardiovascular system undergoes functional and structural adaptations during pregnancy and postpartum to support increased metabolic demands of offspring and placental growth, labor, and delivery, as well as recovery from childbirth. Thus, pregnancy imposes physiological stress upon the maternal cardiovascular system, and in the absence of an appropriate response it imparts potential risks for cardiovascular complications and adverse outcomes. The proportion of pregnancy-related maternal deaths from cardiovascular events has been steadily increasing, contributing to high rates of maternal mortality. Despite advances in cardiovascular physiology research, there is still no comprehensive understanding of maternal cardiovascular adaptations in healthy pregnancies. Furthermore, current approaches for the prognosis of cardiovascular complications during pregnancy are limited. Machine learning (ML) offers new and effective tools for investigating mechanisms involved in pregnancy-related cardiovascular complications as well as the development of potential therapies. The main goal of this review is to summarize existing research that uses ML to understand mechanisms of cardiovascular physiology during pregnancy and develop prediction models for clinical application in pregnant patients. We also provide an overview of ML platforms that can be used to comprehensively understand cardiovascular adaptations to pregnancy and discuss the interpretability of ML outcomes, the consequences of model bias, and the importance of ethical consideration in ML use.


Assuntos
Aprendizado de Máquina , Humanos , Gravidez , Feminino , Fenômenos Fisiológicos Cardiovasculares , Complicações Cardiovasculares na Gravidez/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Obstetrícia/métodos , Adaptação Fisiológica , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico
4.
Am J Physiol Heart Circ Physiol ; 327(1): H221-H241, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819382

RESUMO

Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.


Assuntos
Doenças Cardiovasculares , Modelos Animais de Doenças , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Humanos , Projetos de Pesquisa , Fatores de Risco de Doenças Cardíacas , Medição de Risco , Reprodutibilidade dos Testes , Desenvolvimento Fetal
5.
Am J Physiol Heart Circ Physiol ; 327(1): H191-H220, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758127

RESUMO

Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Período Pós-Parto , Gravidez , Humanos , Feminino , Animais , Complicações Cardiovasculares na Gravidez/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico
6.
Microcirculation ; 31(5): e12857, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38826057

RESUMO

Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.


Assuntos
Adaptação Fisiológica , Tecido Adiposo , Artéria Uterina , Feminino , Gravidez , Humanos , Artéria Uterina/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiologia , Adaptação Fisiológica/fisiologia , Animais
7.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R35-R45, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708544

RESUMO

Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress, yet the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy is unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested with novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [nonpregnant (nulliparous), pregnant (near term), and 1-2 mo after pregnancy (primiparous); n = 7 or 8/group]. Plasma and CA1 proinflammatory cytokines were measured with a MILLIPLEX magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via Western blot analysis. Our results demonstrate that CA1 oxidative stress-associated markers were elevated in pregnant compared with nulliparous rats (P ≤ 0.017) but there were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (P ≤ 0.007) whereas anxiety-like behavior (P ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest that maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.NEW & NOTEWORTHY Healthy pregnancy is associated with elevated maternal systemic and brain oxidative stress. During postpregnancy, brain oxidative stress remains elevated whereas systemic oxidative stress is resolved. This sustained maternal brain oxidative stress is associated with learning impairments and decreased anxiety-like behavior during the postpregnancy period.


Assuntos
Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Feminino , Gravidez , Ratos , Inflamação/metabolismo , Inflamação/fisiopatologia , Memória , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiopatologia , Memória Espacial , Citocinas/metabolismo , Citocinas/sangue , Ansiedade/metabolismo , Neurônios/metabolismo , Aprendizagem em Labirinto , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/sangue
8.
Physiol Genomics ; 55(7): 275-285, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184228

RESUMO

Mitochondrial dysfunction has been implicated in pregnancy-induced hypertension (PIH). The role of mitochondrial gene dysregulation in PIH, and consequences for maternal-fetal interactions, remain elusive. Here, we investigated mitochondrial gene expression and dysregulation in maternal and placental tissues from pregnancies with and without PIH; further, we measured circulating mitochondrial DNA (mtDNA) mutational load, an index of mtDNA integrity. Differential gene expression analysis followed by Time Course Gene Set Analysis (TcGSA) was conducted on publicly available high throughput sequencing transcriptomic data sets. Mutational load analysis was carried out on peripheral mononuclear blood cells from healthy pregnant individuals and individuals with preeclampsia. Thirty mitochondrial differentially expressed genes (mtDEGs) were detected in the maternal cell-free circulating transcriptome, whereas nine were detected in placental transcriptome from pregnancies with PIH. In PIH pregnancies, maternal mitochondrial dysregulation was associated with pathways involved in inflammation, cell death/survival, and placental development, whereas fetal mitochondrial dysregulation was associated with increased production of extracellular vesicles (EVs) at term. Mothers with preeclampsia did not exhibit a significantly different degree of mtDNA mutational load. Our findings support the involvement of maternal mitochondrial dysregulation in the pathophysiology of PIH and suggest that mitochondria may mediate maternal-fetal interactions during healthy pregnancy.NEW & NOTEWORTHY This study identifies aberrant maternal and fetal expression of mitochondrial genes in pregnancies with gestational hypertension and preeclampsia. Mitochondrial gene dysregulation may be a common etiological factor contributing to the development of de novo hypertension in pregnancy-associated hypertensive disorders.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Hipertensão Induzida pela Gravidez/genética , Placenta , Pré-Eclâmpsia/genética , Genes Mitocondriais/genética , DNA Mitocondrial/genética
9.
Physiology (Bethesda) ; 37(4): 0, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001655

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) released upon cell injury or death stimulates diverse pattern recognition receptors to activate innate immune responses and initiate systemic inflammation. In this review, we discuss the temporal changes of ccf-mtDNA during pregnancy and its potential contribution to adverse pregnancy outcomes in pregnancy complications.


Assuntos
Ácidos Nucleicos Livres , Mitocôndrias , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Mitocôndrias/metabolismo , Gravidez
10.
Am J Physiol Heart Circ Physiol ; 325(2): H323-H337, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352412

RESUMO

Bacterial infections and impaired circulating mitochondrial DNA dynamics are associated with adverse pregnancy outcomes. Unmethylated cytosine-guanine dinucleotide (CpG) motifs are common in bacterial and mitochondrial DNA and act as potent immunostimulators. We tested the hypothesis that exposure to CpG oligonucleotides (ODN) during pregnancy would disrupt blood pressure circadian rhythms and placental molecular clock network, mediating aberrant fetoplacental growth dynamics. Rats were repeatedly treated with CpG ODN in the third trimester [gestational days (GD) 14, 16, and 18] and euthanized on GD20 (near term) or treated with a single dose of CpG ODN on GD14 and euthanized 4 h after treatment. Hemodynamic circadian rhythms were analyzed via Lomb-Scargle periodogram analysis on 24-h raw data collected continuously via radiotelemetry. A P value ≥ 0.05 indicates the absence of a circadian rhythm. Following the first treatment with CpG ODN, maternal systolic and diastolic blood pressure circadian rhythms were lost (P ≥ 0.05). Blood pressure circadian rhythm was restored by GD16 and remained unaffected after the second treatment with CpG ODN (P < 0.0001). Diastolic blood pressure circadian rhythm was again lost after the last treatment on GD18 (P ≥ 0.05). CpG ODN increased placental expression of Per2, Per3, and Tnfα (P ≤ 0.05) and affected fetoplacental growth dynamics. Reduced fetal and placental weights were disproportionately associated with increases in the number of resorptions in ODN-treated dams compared with controls. In conclusion, gestational exposure to unmethylated CpG ODN dysregulates the placental molecular clock network and fetoplacental growth dynamics and disrupts blood pressure circadian rhythms.NEW & NOTEWORTHY Gestational exposure to unmethylated CpG ODN dysregulates placental molecular clock network and fetoplacental growth dynamics and disrupts blood pressure circadian rhythms. These findings provide novel insights into the relationship between circadian rhythms and immune responses in pregnancy and propose new mechanisms by which maternal responses to immune triggers could dictate circadian rhythms of cardiovascular processes and placental clock machinery function to determine fetal growth trajectories.


Assuntos
Redes Reguladoras de Genes , Placenta , Ratos , Gravidez , Feminino , Animais , Placenta/metabolismo , Pressão Sanguínea , Ritmo Circadiano/fisiologia , Resultado da Gravidez
11.
Am J Physiol Heart Circ Physiol ; 323(3): H577-H584, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35904885

RESUMO

Perivascular adipose tissue (PVAT) is distinct from other adipose depots, as it has differential gene and protein profiles and vasoactive functions. We have shown that pregnancy affects the morphology of PVAT surrounding the uterine arteries (utPVAT) differentially than the morphology of nonperivascular reproductive adipose depots (i.e., periovarian adipose tissue, OVAT). Here, we hypothesized that pregnancy modifies the profile (size and molecular mass) of exosome-like extracellular vesicles released by utPVAT (Exo-utPVAT) compared with exosome-like extracellular vesicles released by OVAT (Exo-OVAT) and that primary uterine vascular smooth muscle cells (utVSMCs) can internalize Exo-utPVAT. Our findings indicate that utPVAT from pregnant and nonpregnant rats secrete exosome-like vesicles. Exo-utPVAT from pregnant rats were smaller (i.e., molecular size) and heavier (i.e., molecular mass) than those from nonpregnant rats, whereas pregnancy did not affect the size of Exo-OVAT. Immunocytochemistry and confocal microscopy showed that primary utVSMCs internalized Exo-utPVAT (both tissues from the same pregnant rat) labeled by the lipophilic tracer DiO. Treatment of isolated uterine arteries with Exo-utPVAT did not affect relaxation responses to acetylcholine in pregnant or nonpregnant rats. Collectively, these findings demonstrate a novel type of intercellular communication between Exo-utPVAT and utVSMCs and indicate pregnancy modulates the morphology and cargo of Exo-utPVAT.NEW & NOTEWORTHY Uterine perivascular adipose tissue secretes exosome-like vesicles, which are internalized by their adjacent uterine vascular smooth muscle cells. Consideration of the exosomal communication between adipose tissue and vascular smooth muscle cells in the uterine circulation in mathematical models and experimental designs may help us to improve understanding of mechanisms underlying uterine artery adaptive responses to a healthy pregnancy and during pregnancy complications.


Assuntos
Exossomos , Tecido Adiposo/metabolismo , Animais , Comunicação Celular , Feminino , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso , Gravidez , Ratos
12.
Am J Physiol Heart Circ Physiol ; 321(1): H77-H111, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989082

RESUMO

The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.


Assuntos
Artérias/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Veias/fisiologia , Animais , Endotélio Vascular/fisiologia , Microscopia/métodos , Miografia/métodos , Reprodutibilidade dos Testes
13.
Pharmacol Res ; 171: 105788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311071

RESUMO

Uterine perivascular adipose tissue (PVAT) contributes to uterine blood flow regulation in pregnancy, at least in part, due to its effects on uterine artery reactivity. We tested the hypothesis that uterine PVAT modulates the balance between the contribution of nitric oxide synthase (NOS)- and cyclooxygenase (COX)-dependent pathways to acetylcholine (ACh)-induced relaxation in isolated uterine arteries. Concentration-response curves to ACh (1 nM - 30 µM) were performed on uterine arteries from pregnant and non-pregnant rats. Arteries were exposed to Krebs-Henseleit solution (control) or PVAT-conditioned media (PVATmedia) in the presence of the following inhibitors: L-NAME (NOS inhibitor), indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), NS398 (COX-2 inhibitor), SQ 29,548 (thromboxane receptor (TP) inhibitor). In arteries incubated with PVATmedia, the presence of indomethacin increased ACh-induced relaxation, reversing the anti-dilatory effect of PVATmedia. NOS inhibition reduced ACh-induced relaxation in uterine arteries from pregnant rats, and exposure to PVATmedia did not change this effect. Selective inhibition of COX-1 but not COX-2 suppressed relaxation responses to ACh in control arteries. The presence of PVATmedia abolished the effect of COX-1 inhibition. Incubation of uterine arteries from pregnant rats with PVATmedia increased production of thromboxane B2 (TxB2, p = 0.01) but thromboxane receptor (TP) inhibition did not affect the anti-dilatory properties of PVATmedia. In conclusion, inhibition of COX signaling suppressed the anti-dilatory effects of PVATmedia, while PVATmedia had no effect on the contribution of the NOS/NO pathway to ACh-induced relaxation in uterine arteries from pregnant rats, indicating that the anti-dilatory effects of uterine PVAT are mediated in part by COX-dependent mechanisms.


Assuntos
Tecido Adiposo/fisiologia , Ciclo-Oxigenase 1/fisiologia , Ciclo-Oxigenase 2/fisiologia , Proteínas de Membrana/fisiologia , Artéria Uterina/fisiologia , Acetilcolina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Indometacina/farmacologia , Masculino , Proteínas de Membrana/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/fisiologia , Nitrobenzenos/farmacologia , Gravidez , Pirazóis/farmacologia , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R445-R452, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913687

RESUMO

Mitochondrial DNA (mtDNA) exposed to the extracellular space due to cell death has immunostimulatory properties. Case-control studies reported a positive association between odds of developing preeclampsia and circulating mtDNA. These findings are based on relative quantification protocols that do not allow determination of absolute concentrations of mtDNA and are highly sensitive to nuclear DNA contamination. Furthermore, circulating mtDNA concentrations in response to normal pregnancy, which is an inflammatory state characterized by continuous placental cell apoptosis, have not been established. The main objective of this study was to determine longitudinal changes in circulating mtDNA from preconception to first trimester, third trimester, and postpartum in healthy pregnant women. Absolute real-time PCR quantification of mtDNA and nuclear DNA (nDNA) was performed on whole genomic extracts from serum using TaqMan probes and chemistry. Serum cell-free mtDNA and nDNA concentrations were greater in late pregnancy as compared with early pregnancy and postpartum. Pregnant women carrying neonates at the upper quartile of birth length distribution had higher concentrations of mtDNA in late pregnancy compared with pregnancies carrying neonates at the lower quartile. The correlation between circulating mtDNA and nDNA concentrations varied by sex (i.e., pregnancies carrying female vs. male fetuses). This study is the first to establish temporal patterns of circulating cell-free mtDNA concentrations in normal human pregnancy using absolute DNA quantification techniques. Concentrations of circulating mtDNA in normal pregnancy may be used as reference values for the development of clinical prognostic or diagnostic tests in pregnant women with, or at risk of developing, gestational complications.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Adulto , Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Período Pós-Parto/sangue , Gravidez , Trimestres da Gravidez/sangue , Estudos Prospectivos , Caracteres Sexuais , Processos de Determinação Sexual , Adulto Jovem
15.
J Physiol ; 597(15): 3833-3852, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31165480

RESUMO

KEY POINTS: In vivo, uterine perivascular adipose tissue (PVAT) potentiates uterine artery blood flow in pregnant rats, although not in non-pregnant rats. In isolated preparations, uterine PVAT has pro-contractile and anti-dilatory effects on uterine arteries. Pregnancy induces changes in uterine arteries that makes them responsive to uterine PVAT signalling. ABSTRACT: An increase in uterine artery blood flow (UtBF) is a common and necessary feature of a healthy pregnancy. In the present study, we tested the hypothesis that adipose tissue surrounding uterine arteries (uterine perivascular adipose tissue; PVAT) is a novel local mediator of UtBF and uterine artery tone during pregnancy. In vivo experiments in anaesthetized Sprague-Dawley rats showed that pregnant animals (gestational day 16, term = 22--23 days) had a three-fold higher UtBF compared to non-pregnant animals. Surgical removal of uterine PVAT reduced UtBF only in pregnant rats. In a series of ex vivo bioassays, we demonstrated that uterine PVAT had pro-contractile and anti-dilatory effects on rat uterine arteries. In the presence of PVAT-conditioned media, isolated uterine arteries from both pregnant and non-pregnant rats had reduced vasodilatory responses. In non-pregnant rats, these responses were mediated at the level of uterine vascular smooth muscle, whereas, in pregnant rats, PVAT-media reduced endothelium-dependent relaxation. Pregnancy increased adipocyte size in ovarian adipose tissue but had no effect on uterine PVAT adipocyte morphology. In addition, pregnancy down-regulated the gene expression of metabolic adipokines in uterine but not in aortic PVAT. In conclusion, this is the first study to demonstrate that uterine PVAT plays a regulatory role in UtBF, at least in part, as a result of its actions on uterine artery tone. We propose that the interaction between the uterine vascular wall and its adjacent adipose tissue may provide new insights for interventions in pregnancies with adipose tissue dysfunction and abnormal UtBF.


Assuntos
Tecido Adiposo/fisiologia , Circulação Placentária , Gravidez/fisiologia , Artéria Uterina/fisiologia , Vasoconstrição , Vasodilatação , Animais , Feminino , Ratos , Ratos Sprague-Dawley
16.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R472-R485, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30758976

RESUMO

The main objective of these studies was to characterize metabolic, body composition, and cardiovascular responses to a free-choice high-fat, high-sucrose diet in female cycling and pregnant rats. In the nonpregnant state, female Sprague-Dawley rats offered a 3-wk free-choice high-fat, high-sucrose diet had greater energy intake, adiposity, serum leptin, and triglyceride concentrations compared with rats fed with standard chow and developed glucose intolerance. In addition, choice-diet-fed rats had larger cardiac ventricular weights, smaller kidney and pancreas weights, and higher blood pressure than chow-fed rats, but they did not exhibit resistance artery endothelial dysfunction. When the free-choice diet continued throughout pregnancy, rats remained hyperphagic, hyperleptinemic, and obese. Choice pregnant rats exhibited uterine artery endothelial dysfunction and had smaller fetuses compared with chow pregnant rats. Pregnancy normalized mean arterial blood pressure and pancreas weights in choice rats. These studies are the first to provide a comprehensive evaluation of free-choice high-fat, high-sucrose diet on metabolic and cardiovascular functions in female rats, extending the previous studies in males to female cycling and pregnant rodents. Free-choice diet may provide a new model of preconceptual maternal obesity to study the role of increased energy intake, individual food components, and preexisting maternal obesity on maternal and offspring physiological responses during pregnancy and after birth.


Assuntos
Doenças Cardiovasculares/etiologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/toxicidade , Metabolismo Energético , Ciclo Estral , Retardo do Crescimento Fetal/etiologia , Hiperfagia/etiologia , Obesidade/etiologia , Adiposidade , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Comportamento de Escolha , Sacarose Alimentar/metabolismo , Comportamento Alimentar , Feminino , Retardo do Crescimento Fetal/sangue , Retardo do Crescimento Fetal/fisiopatologia , Hemodinâmica , Hiperfagia/sangue , Hiperfagia/fisiopatologia , Hiperfagia/psicologia , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Obesidade/sangue , Obesidade/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Aumento de Peso
17.
Pharmacol Res ; 139: 261-272, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458216

RESUMO

Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Desenvolvimento Embrionário , Desenvolvimento Fetal , Animais , Fenômenos Fisiológicos Cardiovasculares , Feminino , Humanos , Gravidez
18.
Pharmacol Rev ; 68(1): 142-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26721702

RESUMO

Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Receptores Toll-Like/imunologia , Aterosclerose/fisiopatologia , Humanos , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Ligantes , Moléculas com Motivos Associados a Patógenos/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa