Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(15): 3454-3462, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253534

RESUMO

The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Lactococcus lactis/efeitos dos fármacos , Nisina/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nisina/análogos & derivados , Nisina/química , Relação Estrutura-Atividade
2.
Cell Chem Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981479

RESUMO

Spread of antimicrobial resistances urges a need for new drugs against Mycobacterium tuberculosis (Mtb) with mechanisms differing from current antibiotics. Previously, callyaerins were identified as promising anti-tubercular agents, representing a class of hydrophobic cyclopeptides with an unusual (Z)-2,3-di-aminoacrylamide unit. Here, we investigated the molecular mechanisms underlying their antimycobacterial properties. Structure-activity relationship studies enabled the identification of structural determinants relevant for antibacterial activity. Callyaerins are bacteriostatics selectively active against Mtb, including extensively drug-resistant strains, with minimal cytotoxicity against human cells and promising intracellular activity. By combining mutant screens and various chemical proteomics approaches, we showed that callyaerins target the non-essential, Mtb-specific membrane protein Rv2113, triggering a complex dysregulation of the proteome, characterized by global downregulation of lipid biosynthesis, cell division, DNA repair, and replication. Our study thus identifies Rv2113 as a previously undescribed Mtb-specific drug target and demonstrates that also non-essential proteins may represent efficacious targets for antimycobacterial drugs.

3.
RSC Adv ; 10(12): 7232-7240, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493894

RESUMO

Didymellanosine (1), the first analogue of the decahydrofluorene-class of natural products bearing a 13-membered macrocyclic alkaloid conjugated with adenosine, and a new benzolactone derivative, ascolactone C (4) along with eight known compounds (2, 3, 5-10), were isolated from a solid rice fermentation of the endophytic fungus Didymella sp. IEA-3B.1 derived from the host plant Terminalia catappa. In addition, ascochitamine (11) was obtained when (NH4)2SO4 was added to rice medium and is reported here for the first time as a natural product. Didymellanosine (1) displayed strong activity against the murine lymphoma cell line L5178Y, Burkitt's lymphoma B cells (Ramos) and adult lymphoblastic leukemia T cells (Jurkat J16), with IC50 values of 2.0, 3.3 and 4.4 µM, respectively. When subjected to a NFκB inhibition assay, didymellanosine (1) moderately blocked NFκB activation in the triple-negative breast cancer cell line MDA-MB 231. In an antimicrobial assay, ascomylactam C (3) was the most active compound when tested against a panel of Gram-positive bacteria including drug-resistant strains with MICs of 3.1-6.3 µM, while 1 revealed weaker activity. Interestingly, both compounds were also found active against Gram-negative Acinetobacter baumannii with MICs of 3.1 µM, in the presence of a sublethal concentration (0.1 µM) of colistin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa