Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(20): 1771-1788, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39101473

RESUMO

Gaucher disease (GD) is caused by biallelic GBA1/Gba1 mutations that encode defective glucocerebrosidase (GCase). Progranulin (PGRN, encoded by GRN/Grn) is a modifier of GCase, but the interplay between PGRN and GCase, specifically GBA1/Gba1 mutations, contributing to GD severity is unclear. Mouse models were developed with various dosages of Gba1 D409V mutation against the PGRN deficiency (Grn-/-) [Grn-/-;Gba1D409V/WT (PG9Vwt), Grn-/-;Gba1D409V/D409V (PG9V), Grn-/-;Gba1D409V/Null (PG9VN)]. Disease progression in those mouse models was characterized by biochemical, pathological, transcriptomic, and neurobehavioral analyses. Compared to PG9Vwt, Grn-/-;Gba1WT/Null and Grn-/- mice that had a higher level of GCase activity and undetectable pathologies, homozygous or hemizygous D409V in PG9V or PG9VN, respectively, resulted in profound inflammation and neurodegeneration. PG9VN mice exhibited much earlier onset, shorter life span, tissue fibrosis, and more severe phenotypes than PG9V mice. Glycosphingolipid accumulation, inflammatory responses, lysosomal-autophagy dysfunction, microgliosis, retinal gliosis, as well as α-Synuclein increases were much more pronounced in PG9VN mice. Neurodegeneration in PG9VN was characterized by activated microglial phagocytosis of impaired neurons and programmed cell death due to necrosis and, possibly, pyroptosis. Brain transcriptomic analyses revealed the intrinsic relationship between D409V dosage, and the degree of altered gene expression related to lysosome dysfunction, microgliosis, and neurodegeneration in GD, suggesting the disease severity is dependent on a GCase activity threshold related to Gba1 D409V dosage and loss of PGRN. These findings contribute to a deeper understanding of GD pathogenesis by elucidating additional underlying mechanisms of interplay between PGRN and Gba1 mutation dosage in modulating GCase function and disease severity in GD and GBA1-associated neurodegenerative diseases.


Assuntos
Modelos Animais de Doenças , Doença de Gaucher , Glucosilceramidase , Mutação , Progranulinas , Animais , Progranulinas/genética , Camundongos , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Humanos , Camundongos Knockout , Dosagem de Genes
2.
Cell ; 146(1): 37-52, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21700325

RESUMO

Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.


Assuntos
Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Retroalimentação Fisiológica , Doença de Gaucher/patologia , Glucosilceramidas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Neurônios/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(1): e2210442120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574647

RESUMO

Mutations in GBA1, encoding glucocerebrosidase (GCase), cause Gaucher disease (GD) and are also genetic risks in developing Parkinson's disease (PD). Currently, the approved therapies are only effective for directly treating visceral symptoms, but not for primary neuronopathic involvement in GD (nGD). Progranulin (PGRN), encoded by GRN, is a novel modifier of GCase, but the impact of PGRN in GBA1 mutation-associated pathologies in vivo remains unknown. Herein, Grn-/- mice crossed into Gba9v/9v mice, a Gba1 mutant line homozygous for the Gba1 D409V mutation, generating Grn-/-Gba9v/9v (PG9V) mice. PG9V mice exhibited neurobehavioral deficits, early onset, and more severe GD phenotypes compared to Grn-/- and Gba9v/9v mice. Moreover, PG9V mice also displayed PD-like phenotype. Mechanistic analysis revealed that PGRN deficiency caused severe neuroinflammation with microgliosis and astrogliosis, along with impaired autophagy associated with the Gba1 mutation. A PGRN-derived peptide, termed ND7, ameliorated the disease phenotype in GD patient fibroblasts ex vivo. Unexpectedly, ND7 penetrated the blood-brain barrier (BBB) and effectively ameliorated the nGD manifestations and PD pathology in Gba9v/null and PG9V mice. Collectively, this study not only provides the first line of in vivo but also ex vivo evidence demonstrating the crucial role of PGRN in GBA1/Gba1 mutation-related pathologies, as well as a clinically relevant mouse model for mechanistic and potential therapeutics studies for nGD and PD. Importantly, a BBB penetrant PGRN-derived biologic was developed that may provide treatment for rare lysosomal storage diseases and common neurodegenerative disorders, particularly nGD and PD.


Assuntos
Doença de Gaucher , Doença de Parkinson , Progranulinas , Animais , Camundongos , Encéfalo/metabolismo , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genética , Progranulinas/genética , Camundongos Knockout
4.
Nature ; 543(7643): 108-112, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225753

RESUMO

Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.


Assuntos
Proteínas do Sistema Complemento/imunologia , Doença de Gaucher/imunologia , Doença de Gaucher/patologia , Glucosilceramidas/imunologia , Glucosilceramidas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Autoanticorpos/imunologia , Ativação do Complemento , Complemento C5a/biossíntese , Complemento C5a/imunologia , Proteínas do Sistema Complemento/biossíntese , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Doença de Gaucher/metabolismo , Doença de Gaucher/prevenção & controle , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/deficiência , Glucosilceramidase/genética , Glucosiltransferases/biossíntese , Glucosiltransferases/metabolismo , Humanos , Imunoglobulina G/imunologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Camundongos , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia
5.
Semin Immunol ; 37: 30-42, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29478824

RESUMO

The complement system is well appreciated for its role as an important effector of innate immunity that is activated by the classical, lectin or alternative pathway. C5a is one important mediator of the system that is generated in response to canonical and non-canonical C5 cleavage by circulating or cell-derived proteases. In addition to its function as a chemoattractant for neutrophils and other myeloid effectors, C5a and its sister molecule C3a have concerted roles in cell homeostasis and surveillance. Through activation of their cognate G protein coupled receptors, C3a and C5a regulate multiple intracellular pathways within the mitochondria and the lysosomal compartments that harbor multiple enzymes critical for protein, carbohydrate and lipid metabolism. Genetic mutations of such lysosomal enzymes or their receptors can result in the compartmental accumulation of specific classes of substrates in this organelle summarized as lysosomal storage diseases (LSD). A frequent LSD is Gaucher disease (GD), caused by autosomal recessively inherited mutations in GBA1, resulting in functional defects of the encoded enzyme, acid ß-glucosidase (glucocerebrosidase, GCase). Such mutations promote excessive accumulation of ß-glucosylceramide (GC or GL1) in innate and adaptive immune cells frequently associated with chronic inflammation. Recently, we uncovered an unexpected link between the C5a and C5a receptor 1 (C5aR1) axis and the accumulation of GL1 in experimental and clinical GD. Here, we will review the pathways of complement activation in GD, its role as a mediator of the inflammatory response, and its impact on glucosphingolipid metabolism. Further, we will discuss the potential role of the C5a/C5aR1 axis in GL1-specific autoantibody formation and as a novel therapeutic target in GD.


Assuntos
Complemento C5a/metabolismo , Doença de Gaucher/imunologia , Glucosilceramidase/genética , Inflamação/imunologia , Doenças por Armazenamento dos Lisossomos/imunologia , Animais , Autoanticorpos/metabolismo , Doença de Gaucher/genética , Glucosilceramidas/metabolismo , Humanos , Receptor da Anafilatoxina C5a/metabolismo
6.
Hum Mol Genet ; 28(20): 3406-3421, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31373366

RESUMO

Gaucher disease (GD) is caused by GBA1 mutations leading to functional deficiency of acid-ß-glucosidase (GCase). No effective treatment is available for neuronopathic GD (nGD). A subclass of neural stem and precursor cells (NPCs) expresses VLA4 (integrin α4ß1, very late antigen-4) that facilitates NPC entry into the brain following intravenous (IV) infusion. Here, the therapeutic potential of IV VLA4+NPCs was assessed for nGD using wild-type mouse green fluorescent protein (GFP)-positive multipotent induced pluripotent stem cell (iPSC)-derived VLA4+NPCs. VLA4+NPCs successfully engrafted in the nGD (4L;C*) mouse brain. GFP-positive cells differentiated into neurons, astrocytes and oligodendrocytes in the brainstem, midbrain and thalamus of the transplanted mice and significantly improved sensorimotor function and prolonged life span compared to vehicle-treated 4L;C* mice. VLA4+NPC transplantation significantly decreased levels of CD68 and glial fibrillary acidic protein, as well as TNFα mRNA levels in the brain, indicating reduced neuroinflammation. Furthermore, decreased Fluoro-Jade C and NeuroSilver staining suggested inhibition of neurodegeneration. VLA4+NPC-engrafted 4L;C* midbrains showed 35% increased GCase activity, reduced substrate [glucosylceramide (GC, -34%) and glucosylsphingosine (GS, -11%)] levels and improved mitochondrial oxygen consumption rates in comparison to vehicle-4L;C* mice. VLA4+NPC engraftment in 4L;C* brain also led to enhanced expression of neurotrophic factors that have roles in neuronal survival and the promotion of neurogenesis. This study provides evidence that iPSC-derived NPC transplantation has efficacy in an nGD mouse model and provides proof of concept for autologous NPC therapy in nGD.


Assuntos
Doença de Gaucher/metabolismo , Doença de Gaucher/terapia , Glucosilceramidase/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Infusões Intravenosas , Integrina alfa4beta1/metabolismo , Camundongos , Células-Tronco Neurais/citologia , beta-Glucosidase/metabolismo
7.
Am J Pathol ; 188(2): 525-538, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29154769

RESUMO

Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density lipoprotein, very-low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles, thereby indicating involvement of lipolytic enzymes in their generation. Incubation of human monocyte-derived macrophages with the isolated extracellular lipoprotein particles or with plasma lipoproteins that had been lipolytically modified in vitro induced intracellular lipid accumulation and triggered inflammasome activation in them. Taken together, extracellular lipids accumulate in human carotid plaques as distinct 3D structures that include aggregated and fused lipoprotein particles and cholesterol crystals. The particles originate from plasma lipoproteins, show signs of lipolytic modifications, and associate with cholesterol crystals. By inducing intracellular cholesterol accumulation (ie, foam cell formation) and inflammasome activation, the extracellular lipoprotein particles may actively enhance atherogenesis.


Assuntos
Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Artérias Carótidas/ultraestrutura , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Células Cultivadas , Colesterol/metabolismo , Endarterectomia das Carótidas , Espaço Extracelular/metabolismo , Humanos , Imageamento Tridimensional/métodos , Inflamassomos/metabolismo , Lipólise/fisiologia , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Microscopia Eletrônica de Transmissão/métodos
8.
Arterioscler Thromb Vasc Biol ; 38(5): 1191-1201, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599133

RESUMO

OBJECTIVE: To explore the role of LAL (lysosomal acid lipase) in macrophage cholesterol efflux and whole-body reverse cholesterol transport. APPROACH AND RESULTS: Immortalized peritoneal macrophages from lal-/- mice showed reduced expression of ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1), reduced production of the regulatory oxysterol 27-hydroxycholesterol, and impaired suppression of cholesterol synthesis on exposure to acetylated low-density lipoprotein when compared with lal+/+ macrophages. LAL-deficient mice also showed reduced hepatic ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8) expression compared with lal+/+ mice. LAL-deficient macrophages loaded with [3H]-cholesteryl oleate-labeled acetylated low-density lipoprotein showed impaired efflux of released [3H]-cholesterol to apoA-I (apolipoprotein A-I), with normalization of [3H]-cholesteryl ester levels and partial correction of ABCA1 expression and cholesterol efflux to apoA-I when treated with exogenous rhLAL (recombinant human LAL protein). LAL-deficient mice injected intraperitoneally with lal-/- macrophages cholesterol loaded and labeled in the same way exhibited only 1.55±0.35% total injected [3H]-cholesterol counts appearing in the feces for 48 h (n=30), compared with 5.38±0.92% in lal+/+ mice injected with labeled lal+/+ macrophages (n=27), P<0.001. To mimic the therapeutic condition of delivery of supplemental LAL in vivo, injection of labeled lal-/- macrophages into lal+/+ mice resulted in a significant increase in reverse cholesterol transport (2.60±0.46% of 3H-cholesterol counts in feces at 48 hours [n=19]; P<0.001 when compared with injection into lal-/- mice). CONCLUSIONS: These results indicate a critical role for LAL in promoting both macrophage and whole-body reverse cholesterol transport and the ability of supplemental LAL to be taken up and correct reverse cholesterol transport in vivo.


Assuntos
Colesterol/metabolismo , Macrófagos Peritoneais/enzimologia , Esterol Esterase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico , Linhagem Celular , Colesterol/sangue , Fezes/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fígado/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Esterol Esterase/deficiência , Esterol Esterase/genética
9.
Hum Mol Genet ; 25(23): 5126-5141, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655403

RESUMO

Neuronopathic Gaucher disease (nGD) manifests as severe neurological symptoms in patients with no effective treatment available. Ryanodine receptors (Ryrs) are a family of calcium release channels on intracellular stores. The goal of this study is to determine if Ryrs are potential targets for nGD treatment. A nGD cell model (CBE-N2a) was created by inhibiting acid ß-glucosidase (GCase) in N2a cells with conduritol B epoxide (CBE). Enhanced cytosolic calcium in CBE-N2a cells was blocked by either ryanodine or dantrolene, antagonists of Ryrs and by Genz-161, a glucosylceramide synthase inhibitor, suggesting substrate-mediated ER-calcium efflux occurs through ryanodine receptors. In the brain of a nGD (4L;C*) mouse model, expression of Ryrs was normal at 13 days of age, but significantly decreased below the wild type level in end-stage 4L;C* brains at 40 days. Treatment with dantrolene in 4L;C* mice starting at postnatal day 5 delayed neurological pathology and prolonged survival. Compared to untreated 4L;C* mice, dantrolene treatment significantly improved gait, reduced LC3-II levels, improved mitochondrial ATP production and reduced inflammation in the brain. Dantrolene treatment partially normalized Ryr expression and its potential regulators, CAMK IV and calmodulin. Furthermore, dantrolene treatment increased residual mutant GCase activity in 4L;C* brains. These data demonstrate that modulating Ryrs has neuroprotective effects in nGD through mechanisms that protect the mitochondria, autophagy, Ryr expression and enhance GCase activity. This study suggests that calcium signalling stabilization, e.g. with dantrolene, could be a potential disease modifying therapy for nGD.


Assuntos
Dantroleno/administração & dosagem , Doença de Gaucher/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Doença de Gaucher/genética , Doença de Gaucher/fisiopatologia , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
10.
Hum Mol Genet ; 24(24): 7031-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26420838

RESUMO

Defective lysosomal acid ß-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.


Assuntos
Encéfalo/metabolismo , Doença de Gaucher/genética , Imino Piranoses/uso terapêutico , MicroRNAs/metabolismo , Chaperonas Moleculares/uso terapêutico , RNA Mensageiro/metabolismo , Animais , Axônios/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Perfilação da Expressão Gênica , Glucosilceramidas/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Neuroglia/patologia , Neurônios/patologia , Fenótipo , Psicosina/análogos & derivados , Psicosina/metabolismo , Transdução de Sinais , Transmissão Sináptica , Serina-Treonina Quinases TOR/metabolismo
11.
Mol Genet Metab ; 120(1-2): 38-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27923545

RESUMO

The advent of the first effective specific therapy for a lysosomal storage disease (LSDs), Gaucher disease type 1, by Roscoe O. Brady was foundational for development of additional treatments for this group of rare diseases. The past 26years, since the approval of enzyme therapy for Gaucher disease type 1, have witnessed a burgeoning understanding of LSDs at genetic, molecular, biochemical, cell biologic, and clinical levels. Simultaneously, this expansion of knowledge has exposed our incomplete understanding of the individual pathophysiologies of LSDs as well as difficult challenges for improvement in therapy and therapeutic outcomes for afflicted individuals. Here, 10 such challenges/problems representing major impediments, which need to be overcome, to move forward toward the goals of more effective and complete therapies for these devastating diseases.


Assuntos
Terapia de Reposição de Enzimas/métodos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Progressão da Doença , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Mutação , Resultado do Tratamento
13.
Mol Genet Metab ; 120(1-2): 47-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28040394

RESUMO

In Gaucher disease (GD), deficiency of lysosomal acid ß-glucosidase results in a broad phenotypic spectrum that is classified into three types based on the absence (type 1 [GD1]) or presence and severity of primary central nervous system involvement (type 2 [GD2], the fulminant neuronopathic form, and type 3 [GD3], the milder chronic neuronopathic form). Enzyme replacement therapy (ERT) with imiglucerase ameliorates and prevents hematological and visceral manifestations in GD1, but data in GD3 are limited to small, single-center series. The effects of imiglucerase ERT on hematological, visceral and growth outcomes (note: ERT is not expected to directly impact neurologic outcomes) were evaluated during the first 5years of treatment in 253 children and adolescents (<18years of age) with GD3 enrolled in the International Collaborative Gaucher Group (ICGG) Gaucher Registry. The vast majority of GBA mutations in this diverse global population consisted of only 2 mutations: L444P (77%) and D409H (7%). At baseline, GD3 patients exhibited early onset of severe hematological and visceral disease and growth failure. During the first year of imiglucerase treatment, hemoglobin levels and platelet counts increased and liver and spleen volumes decreased, leading to marked decreases in the number of patients with moderate or severe anemia, thrombocytopenia, and hepatosplenomegaly. These improvements were maintained through Year 5. There was also acceleration in linear growth as evidenced by increasing height Z-scores. Despite devastating disease at baseline, the probability of surviving for at least 5years after starting imiglucerase was 92%. In this large, multinational cohort of pediatric GD3 patients, imiglucerase ERT provided a life-saving and life-prolonging benefit for patients with GD3, suggesting that, with proper treatment, many such severely affected patients can lead productive lives and contribute to society.


Assuntos
Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/genética , Mutação , Adolescente , Criança , Pré-Escolar , Terapia de Reposição de Enzimas , Feminino , Doença de Gaucher/classificação , Doença de Gaucher/genética , Glucosilceramidase/uso terapêutico , Humanos , Masculino , Sistema de Registros , Análise de Sobrevida , Resultado do Tratamento
14.
Mol Genet Metab ; 120(1-2): 1-7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27866832

RESUMO

To celebrate the research visions and accomplishments of the late Roscoe O. Brady (1923-2016), remembrance commentaries were requested from several of his postdoctoral research fellows and colleagues. These commentaries not only reflect on the accomplishments of Dr. Brady, but they also share some of the backstories and experiences working in the Brady laboratory. They provide insights and perspectives on Brady's research activities, and especially on his efforts to develop an effective treatment for patients with Type 1 Gaucher disease. These remembrances illuminate Brady's efforts to implement the latest scientific advances with an outstanding team of young co-investigators to develop and demonstrate the safety and effectiveness of the first enzyme replacement therapy for a lysosomal storage disease. Brady's pursuit and persistence in accomplishing his research objectives provide insights into this remarkably successful physician scientist who paved the way for the development of treatments for patients with other lysosomal storage diseases.


Assuntos
Terapia de Reposição de Enzimas/história , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Terapia de Reposição de Enzimas/métodos , Doença de Gaucher/tratamento farmacológico , História do Século XX , História do Século XXI , Humanos , Pesquisadores
15.
Mol Ther ; 24(6): 1019-1029, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26948439

RESUMO

Gaucher disease (GD) is caused by a deficiency of glucocerebrosidase and the consequent lysosomal accumulation of unmetabolized glycolipid substrates. Enzyme-replacement therapy adequately manages the visceral manifestations of nonneuronopathic type-1 Gaucher patients, but not the brain disease in neuronopathic types 2 and 3 GD. Substrate reduction therapy through inhibition of glucosylceramide synthase (GCS) has also been shown to effectively treat the visceral disease. Here, we evaluated the efficacy of a novel small molecule inhibitor of GCS with central nervous system (CNS) access (Genz-682452) to treat the brain disease. Treatment of the conduritol ß epoxide-induced mouse model of neuronopathic GD with Genz-682452 reduced the accumulation of liver and brain glycolipids (>70% and >20% respectively), extent of gliosis, and severity of ataxia. In the genetic 4L;C* mouse model, Genz-682452 reduced the levels of substrate in the brain by >40%, the extent of gliosis, and paresis. Importantly, Genz-682452-treated 4L;C* mice also exhibited an ~30% increase in lifespan. Together, these data indicate that an orally available antagonist of GCS that has CNS access is effective at attenuating several of the neuropathologic and behavioral manifestations associated with mouse models of neuronopathic GD. Therefore, Genz-682452 holds promise as a potential therapeutic approach for patients with type-3 GD.


Assuntos
Carbamatos/administração & dosagem , Sistema Nervoso Central/metabolismo , Inibidores Enzimáticos/administração & dosagem , Doença de Gaucher/tratamento farmacológico , Glucosiltransferases/antagonistas & inibidores , Glicolipídeos/metabolismo , Quinuclidinas/administração & dosagem , Administração Oral , Animais , Carbamatos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Doença de Gaucher/induzido quimicamente , Doença de Gaucher/metabolismo , Humanos , Inositol/análogos & derivados , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Camundongos , Quinuclidinas/farmacologia , Distribuição Tecidual , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 111(4): E435-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474794

RESUMO

The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesis--two crucial arms of cancer growth--AMPK also ensures viability by metabolic reprogramming in cancer cells. AMPK activation by two indirect AMPK agonists AICAR and metformin (now in over 50 clinical trials on cancer) has been correlated with reduced cancer cell proliferation and viability. Surprisingly, we found that compared with normal tissue, AMPK is constitutively activated in both human and mouse gliomas. Therefore, we questioned whether the antiproliferative actions of AICAR and metformin are AMPK independent. Both AMPK agonists inhibited proliferation, but through unique AMPK-independent mechanisms and both reduced tumor growth in vivo independent of AMPK. Importantly, A769662, a direct AMPK activator, had no effect on proliferation, uncoupling high AMPK activity from inhibition of proliferation. Metformin directly inhibited mTOR by enhancing PRAS40's association with RAPTOR, whereas AICAR blocked the cell cycle through proteasomal degradation of the G2M phosphatase cdc25c. Together, our results suggest that although AICAR and metformin are potent AMPK-independent antiproliferative agents, physiological AMPK activation in glioma may be a response mechanism to metabolic stress and anticancer agents.


Assuntos
Ciclo Celular/fisiologia , Proteínas Quinases/efeitos dos fármacos , Serina-Treonina Quinases TOR/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Lipogênese/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Knockout , Proteínas Quinases/genética
17.
J Neurosci ; 35(7): 3263-75, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698761

RESUMO

Saposin B (Sap B) is an essential activator protein for arylsulfatase A in the hydrolysis of sulfatide, a lipid component of myelin. To study Sap B's role in hearing and balance, a Sap B-deficient (B(-/-)) mouse was evaluated. At both light and electron microscopy (EM) levels, inclusion body accumulation was seen in satellite cells surrounding spiral ganglion (SG) neurons from postnatal month 1 onward, progressing into large vacuoles preceding satellite cell degeneration, and followed by SG degeneration. EM also revealed reduced or absent myelin sheaths in SG neurons from postnatal month 8 onwards. Hearing loss was initially seen at postnatal month 6 and progressed thereafter for frequency-specific stimuli, whereas click responses became abnormal from postnatal month 13 onward. The progressive hearing loss correlated with the accumulation of inclusion bodies in the satellite cells and their subsequent degeneration. Outer hair cell numbers and efferent function measures (distortion product otoacoustic emissions and contralateral suppression) were normal in the B(-/-) mice throughout this period. Alcian blue staining of SGs demonstrated that these inclusion bodies corresponded to sulfatide accumulation. In contrast, changes in the vestibular system were much milder, but caused severe physiologic deficits. These results demonstrate that loss of Sap B function leads to progressive sulfatide accumulation in satellite cells surrounding the SG neurons, leading to satellite cell degeneration and subsequent SG degeneration with a resultant loss of hearing. Relative sparing of the efferent auditory and vestibular neurons suggests that alternate glycosphingolipid metabolic pathways predominate in these other systems.


Assuntos
Transtornos da Audição/etiologia , Leucodistrofia Metacromática/complicações , Leucodistrofia Metacromática/genética , Degeneração Neural/etiologia , Saposinas/deficiência , Células Satélites Perineuronais/patologia , Gânglio Espiral da Cóclea/patologia , Estimulação Acústica , Animais , Morte Celular/genética , Cóclea/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Lateralidade Funcional , Testes Auditivos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Emissões Otoacústicas Espontâneas/genética , Saposinas/genética , Gânglio Espiral da Cóclea/ultraestrutura , Natação/psicologia
18.
Hum Mol Genet ; 23(15): 3943-57, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24599400

RESUMO

Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid ß-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of ß-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of ß-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aß-aggregates) in nGD.


Assuntos
Doença de Gaucher/genética , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , Neurônios/metabolismo , beta-Glucosidase/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inositol/análogos & derivados , Inositol/farmacologia , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/patologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Agregação Patológica de Proteínas , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo
20.
J Med Genet ; 52(2): 85-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480986

RESUMO

BACKGROUND: Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS: Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS: Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS: Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.


Assuntos
Blefaroptose/enzimologia , Blefaroptose/genética , Hidrolases de Éster Carboxílico/genética , Nanismo/enzimologia , Nanismo/genética , Predisposição Genética para Doença , Hipertricose/enzimologia , Hipertricose/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Síndrome de Laurence-Moon/enzimologia , Síndrome de Laurence-Moon/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Alelos , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/química , Sistema Nervoso Central/patologia , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fosfolipases/química , Fosfolipases/genética , Estrutura Terciária de Proteína , Retina/patologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa