Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Small ; 20(29): e2400234, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38426650

RESUMO

Investigations concerning the glyoxylate moiety as a photocleavable functional group for visible light photoinitiators, particularly in the initiation of free radical photopolymerization remain limited. This study introduces nine innovative carbazole-based ethyl glyoxylate derivatives (CEGs), which are synthesized and found to exhibit excellent photoinitiation abilities as monocomponent photoinitiating systems. Notably, these structures demonstrate robust absorption in the near-UV/visible range, surpassing the commercial photoinitiators. Moreover, the newly developed glyoxylate derivatives show higher acrylate function conversions compared to a benchmark photoinitiator (MBF) in free radical photopolymerization. Elucidation of the photoinitiation mechanism of CEGs is achieved through a comprehensive analysis involving the decarboxylation reaction and electron spin resonance spin trapping. Furthermore, their practical utility is confirmed during direct laser writing and 3D printing processes, enabling the successful fabrication of 3D printed objects. This study introduces pioneering concepts and effective strategies in the molecular design of novel photoinitiators, showcasing their potential for highly advantageous applications in 3D printing.

2.
Macromol Rapid Commun ; : e2400196, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830612

RESUMO

The utilization of two-component systems comprising camphorquinone (CQ) and aromatic amines has become prevalent in the photopolymerization. However, there are still concerns about the safety of this CQ/amine system, mainly because of the toxicity associated with the leaching of aromatic amines. In light of these concerns, this study aims to develop novel coinitiator combinations featuring CQ and amines which cannot be leached out of materials, enabling free radical polymerization of representative dentalmethacrylate resins under blue light irradiation. This approach involves the initial design and analysis of hydrogen donors with low C─H bond dissociation energy through molecular modeling. Subsequently, copolymerizable methacrylate functional groups are incorporated via chemical modification, allowing it to act as both coinitiator and copolymerization monomer to achieve low migrationand leachability properties. This work presents, for the first time, the synthesis of the innovative coinitiator and compares its performance with the benchmark CQ/ethyl-4-dimethylaminobenzoate (EDB)-based photoinitiation system (PIS). The results demonstrate the effectiveness of the newly proposed PIS. Finally, an in-depth investigation is conducted into the reaction mechanism associated with this PIS through molecular orbital calculations and electron spin resonance studies.

3.
Macromol Rapid Commun ; 43(19): e2200314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35526219

RESUMO

In both organic and polymer synthesis, photochemistry of charge transfer complexes (CTCs) is considered as a powerful approach to expand visible-light-driven radical chemistry reaction. One reports herein on the development of a class of useful CTCs using pyridinium salts as efficient electron acceptors (combined with N, N, 3,5-tetramethylaniline, TMA) to achieve a multiwavelength (375-560 nm) metal-free LED photopolymerization process under mild conditions (open to air, without monomer purification and inhibitor removal). The UV-vis absorption spectra and molecular modeling simultaneously verify its potential blue-green absorbing wavelength range. Also, their good thermal initiation behavior at relatively low temperatures makes it easier to achieve thick samples and/or polymerization in the shadow region in practice. More importantly, with excellent photoinitiating capability, the formulation is successfully applied to direct laser write (DLW) and high-resolution 3D printing, yielding a series of objects with well-defined structures, such as letters, ring, solid squares, and chess pieces. These new pyridinium salt acceptors further extend the applicability to visible photopolymerizable resins and additive-containing formulations for efficient surface and deep curing.


Assuntos
Polímeros , Sais , Fotoquímica , Polimerização , Polímeros/química , Impressão Tridimensional , Sais/química
4.
Macromol Rapid Commun ; 42(15): e2100207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33938080

RESUMO

A series of Type I photoinitiators (PIs) based on a nitrocarbazole scaffold are developed and examined for the first time as photoinitiators for visible light photopolymerization. Three oxime esters (OXE-M, OXE-V, OXE-P) varying by the terminal groups (acetyl, acryloyl and benzoyl) attached via the oxime ester group are originally prepared. As a result of this, the three PIs exhibit excellent photoinitiation abilities in the presence of acrylate monomers upon LED@ 405 nm irradiation. Markedly, OXE-M exhibits a better performance than the benchmark Type I phosphine-oxide (diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide TPO). Chemical mechanisms supporting the polymerization process with these PIs are investigated by steady state photolysis, molecular orbital calculations and real-time Fourier transformed infrared spectroscopy. After the cleavage of N─O bond and decarboxylation, free radicals are generated to initiate the free radical polymerization efficiently. Free radical photopolymerization of OXE-M is applied in direct laser write and 3D printing. Interestingly, OXE-M exhibits thermal initiation behaviors in monomers and can be used as dual photo and thermal initiators. The highly opaque feature of carbon fibers makes it difficult for light penetration, so dual photo/thermal curing are used here to prepare carbon fiber composites.


Assuntos
Ésteres , Oximas , Carbazóis , Polimerização , Impressão Tridimensional
5.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33800978

RESUMO

In this paper, nine organic compounds based on the coumarin scaffold and different substituents were synthesized and used as high-performance photoinitiators for free radical photopolymerization (FRP) of meth(acrylate) functions under visible light irradiation using LED at 405 nm. In fact, these compounds showed a very high initiation capacity and very good polymerization profiles (both high rate of polymerization (Rp) and final conversion (FC)) using two and three-component photoinitiating systems based on coum/iodonium salt (0.1%/1% w/w) and coum/iodonium salt/amine (0.1%/1%/1% w/w/w), respectively. To demonstrate the efficiency of the initiation of photopolymerization, several techniques were used to study the photophysical and photochemical properties of coumarins, such as: UV-visible absorption spectroscopy, steady-state photolysis, real-time FTIR, and cyclic voltammetry. On the other hand, these compounds were also tested in direct laser write experiments (3D printing). The synthesis of photocomposites based on glass fiber or carbon fiber using an LED conveyor at 385 nm (0.7 W/cm2) was also examined.

6.
Angew Chem Int Ed Engl ; 60(31): 17037-17044, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33955632

RESUMO

In the development of 3D printing fuels, there is a need for new photoinitiating systems working under mild conditions and/or leading to polymers with new and/or enhanced properties. In this context, we introduce herein N-heterocyclic carbene-borane complexes as reagents for a new type of photo-click reaction, the borane-(meth)acrylate click reaction. Remarkably, the higher bond number of boranes relative to thiols induced an increase of the network density associated with faster polymerization kinetics. Solid-state NMR evidenced the strong participation of the boron centers on the network properties, while DMA and AFM showed that the materials exhibit improved mechanical properties, as well as reduced solvent swelling.

7.
Macromol Rapid Commun ; 41(15): e2000289, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32638497

RESUMO

Free radical polymerization upon near-infrared (NIR) light is still the subject of intense research efforts and remains a huge challenge particularly for long wavelengths (>1000 nm). In this study, a NIR sensitizer operating upon long wavelength (1064 nm) is proposed for an efficient polymerization of acrylate monomers. A new three-component photoinitiating system is developed comprising the NIR sensitizer in combination with an Iodonium salt (Iod) and an amine. Remarkably, the NIR sensitizer (IR 1064) absorbing strongly in all the near infrared region (700-1200 nm) offers the possibility to use a broad range of irradiation wavelengths, i.e., examples are provided at 785 and 1064 nm. Such long wavelengths are characterized by many advantages such as a deeper penetration of light and therefore a better curing of the monomer but it is also much safer than UV light. Excellent performance is observed for the three-component IR 1064/Iod/Amine system under air: high conversion of acrylate functions associated with a fast polymerization time. The use of IR 1064 as NIR sensitizer with a broad NIR absorption is-to the best of current knowledge-never proposed in the literature. The photoinitiating performances are studied using real-time Fourier transform infrared spectroscopy.


Assuntos
Acrilatos/efeitos da radiação , Radicais Livres/química , Processos Fotoquímicos , Acrilatos/química , Aminas/química , Cinética , Polimerização/efeitos da radiação , Radiação não Ionizante , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Raios Ultravioleta
8.
Molecules ; 25(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260383

RESUMO

Carbazole structures are of high interest in photopolymerization due to their enhanced light absorption properties in the near-UV or even visible ranges. Therefore, type I photoinitiators combining the carbazole chromophore to the well-established phosphine-oxides were proposed and studied in this article. The aim of this article was to propose type I photoinitiators that can be more reactive than benchmark phosphine oxides, which are among the more reactive type I photoinitiators for a UV or near-UV light emitting diodes (LED) irradiation. Two molecules were synthesized and their UV-visible light absorption properties as well as the quantum yields of photolysis and photopolymerization performances were measured. Remarkably, the associated absorption was enhanced in the 350-410 nm range compared to benchmark phosphine oxides, and one compound was found to be more reactive in photopolymerization than the commercial photoinitiator TPO-L for an irradiation at 395 nm.


Assuntos
Óxidos/síntese química , Fosfinas/química , Estrutura Molecular , Óxidos/química , Processos Fotoquímicos , Polimerização , Teoria Quântica , Raios Ultravioleta
9.
Macromol Rapid Commun ; 40(20): e1900319, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486192

RESUMO

1-Aryl-2-(triisopropylsilyl)ethane-1,2-diones (SEDs) are proposed here as a new class of visible Type I photoinitiators (PIs) for free radical polymerization under air upon exposure to blue (@455 nm) and green (@520 nm) LEDs. Remarkably, these new systems present good polymerization performances and excellent bleaching properties compared to camphorquinone-based systems, and transparent polymers are obtained upon visible light irradiation. Real-time Fourier transform infrared spectroscopy is used to monitor the polymerization profiles. Molecular orbital calculations are also carried out for a better understanding of the structure/reactivity relationship of the photoinitiators.


Assuntos
Etano/química , Luz , Metacrilatos/síntese química , Polimerização , Metacrilatos/química , Espectrofotometria Ultravioleta
10.
Photochem Photobiol Sci ; 17(5): 578-585, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29620093

RESUMO

Six new carbazole based compounds (Ca1-Ca6) are synthesized and proposed as high performance photoinitiators with iodonium salt (iod) and/or an amine (EDB) for both the free radical polymerization (FRP) of acrylates and the cationic polymerization (CP) of epoxides upon near UV and visible light exposure using light emitting diodes (LEDs) @385 nm and @405 nm. Excellent polymerization initiating abilities are found and high final reactive function conversions are acquired. A full picture of the involved photochemical mechanisms is given.

11.
Macromol Rapid Commun ; 39(19): e1800172, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29676024

RESUMO

Multihydroxy-anthraquinone derivatives [i.e., 1,2,4-trihydroxyanthraquinone (124-THAQ), 1,2,7-trihydroxyanthraquinone (127-THAQ), and 1,2,5,8-tetrahydroxyanthraquinone (1258-THAQ)] can interact with various additives [e.g., iodonium salt, tertiary amine, N-vinylcarbazole, and 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine] under household green LED irradiation to generate active species (cations and radicals). The relevant photochemical mechanism is investigated using quantum chemistry, fluorescence, cyclic voltammetry, laser flash photolysis, steady state photolysis, and electron spin resonance spin-trapping techniques. Furthermore, the multihydroxy-anthraquinone derivative-based photoinitiating systems are capable of initiating cationic photopolymerization of epoxides or divinyl ethers under green LED, and the relevant photoinitiation ability is consistent with the photochemical reactivity (i.e., 124-THAQ-based photoinitiating system exhibits highest reactivity and photoinitiation ability). More interestingly, multihydroxy-anthraquinone derivative-based photoinitiating systems can initiate free radical crosslinking or controlled (i.e., reversible addition-fragmentation chain transfer) photopolymerization of methacrylates under green LED. It reveals that multihydroxy-anthraquinone derivatives can be used as versatile photoinitiators for various types of photopolymerization reactions.


Assuntos
Antraquinonas/química , Radicais Livres/química , Luz , Processos Fotoquímicos
12.
Angew Chem Int Ed Engl ; 57(32): 10251-10256, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29928777

RESUMO

1,3-Dimethylimidazol-2-ylidene difluoroborane (NHC-BF2 H) was prepared in a one-pot, two-step reaction from the parent ligated borane (NHC-BH3 ). The derived difluoroboryl radical (NHC-BF2. ) was generated by laser flash photolysis experiments and characterized by UV spectroscopy and rate-constant measurements. It is transient and reacts quickly with O2 . Unusually, it also reacts more rapidly with ethyl vinyl ether than with methyl acrylate. By this measure, it is the first electrophilic ligated boryl radical. Both NHC-BH3 and NHC-BF2 H serve as co-initiators in bulk photopolymerizations, converting both electron-poor and electron-rich monomers at roughly similar rates. However, the difluorinated coinitiator provides polymers with dramatically increased chain lengths from both monomers.

13.
Macromol Rapid Commun ; 38(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27634099

RESUMO

A new photoinitiator based on a bis-silylketone (BSK) structure is proposed as a novel compound leading to highly efficient initiating silyl radicals for the polymerization of methacrylates (e.g., a bisphenol A-glycidyl methacrylate/triethyleneglycol dimethacrylate blend (70%/30% w/w)) upon exposure to a blue light emitting diode and a green laser diode. The polymerization profiles are recorded by real time Fourier transform IR (FTIR) spectroscopy. Absorption, fluorescence, electron spin resonance (ESR), and steady state experiments are used to investigate the involved chemical mechanisms. Molecular orbital calculations are also carried out. Remarkably, BSK efficiently works in the presence of an iodonium salt. The overall mechanism for the initiation step is clarified. This novel class of silyl radical generating photoinitiators is really promising for the photopolymerization of methacrylates, e.g., in dental materials.


Assuntos
Materiais Dentários/química , Cetonas/química , Metacrilatos/síntese química , Fotoquímica , Polimerização , Cânfora/análogos & derivados , Cânfora/química , Teste de Materiais
14.
Molecules ; 22(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207574

RESUMO

Radical chemistry is a very convenient way to produce polymer materials. Here, an application of a particular photoinduced radical chemistry is illustrated. Seven new carbazole derivatives Cd1-Cd7 are incorporated and proposed as high performance near-UV photoinitiators for both the free radical polymerization (FRP) of (meth)acrylates and the cationic polymerization (CP) of epoxides utilizing Light Emitting Diodes LEDs @405 nm. Excellent polymerization-initiating abilities are found and high final reactive function conversions are obtained. Interestingly, these new derivatives display much better near-UV polymerization-initiating abilities compared to a reference UV absorbing carbazole (CARET 9H-carbazole-9-ethanol) demonstrating that the new substituents have good ability to red shift the absorption of the proposed photoinitiators. All the more strikingly, in combination with iodonium salt, Cd1-Cd7 are likewise preferred as cationic photoinitiators over the notable photoinitiator bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (BAPO) for mild irradiation conditions featuring their remarkable reactivity. In particular their utilization in the preparation of new cationic resins for LED projector 3D printing is envisioned. A full picture of the included photochemical mechanisms is given.


Assuntos
Polímeros/química , Impressão Tridimensional , Carbazóis/química , Radicais Livres/química , Polimerização
15.
Macromol Rapid Commun ; 37(10): 840-4, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27072016

RESUMO

The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near-UV-visible absorption properties combined with outstanding fluorescent properties allow them to act as high-performance photoinitiators when used in combination with diaryliodonium salt. These two-component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener-initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron-spin resonance-spin trapping, fluorescence, cyclic voltammetry, and steady-state photolysis techniques.


Assuntos
Fluorescência , Radicais Livres/química , Polimerização , Polímeros/química , Benzenossulfonatos/química , Benzoxazóis/química , Luz , Fotoquímica , Polímeros/síntese química , Tiofenos/química
16.
Chemistry ; 21(39): 13772-7, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26239157

RESUMO

A small library of triazolylidene-boranes that differ only in the nature of the aryl group on the external nitrogen atom was prepared. Their reactivity as hydrogen-atom donors, as well as that of the corresponding N-heterocyclic carbene (NHC)-boryl radicals toward methyl acrylate and oxygen, was investigated by laser flash photolysis, molecular orbital calculations, and ESR spin-trapping experiments, and benchmarked relative to the already known dimethyltriazolylidene-borane. The new NHC-boranes were also used as co-initiators for the Type I photopolymerization of acrylates. This allowed a structure-reactivity relationship with regard to the substitution pattern of the NHC to be established and the role of electronic effects in the reactivity of NHC-boryl radicals to be probed. Although their rate of addition to methyl acrylate depends on their electronegativity, the radicals are all nucleophilic and good initiators for photopolymerization reactions.


Assuntos
Boranos/química , Radicais Livres/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Triazóis/química , Metano/química , Estrutura Molecular , Processos Fotoquímicos , Polimerização , Estereoisomerismo
17.
Molecules ; 19(9): 15026-41, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25237756

RESUMO

The search for radical initiators able to work under soft conditions is a great challenge, driven by the fact that the use of safe and cheap light sources is very attractive. In the present paper, a review of some recently reported photoinitiating systems for polymerization under soft conditions is provided. Different approaches based on multi-component systems (e.g., photoredox catalysis) or light harvesting photoinitiators are described and discussed. The chemical mechanisms associated with the production of free radicals usable as initiating species or mediators of cations are reported.


Assuntos
Fotoquímica , Polimerização
18.
Dent Mater ; 40(8): 1191-1198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851966

RESUMO

OBJECTIVES: Hydroperoxides are key constituents of two-component dental materials. The objective of this study was to evaluate the influence of the hydroperoxide structure on the reactivity and on the mechanical properties of self-cure composites. METHODS: Hydroperoxides HP1-3 were synthesized by selective catalytic oxidation of the corresponding para-substituted cumene precursors and isolated in high purity. They were characterized by 1H NMR and 13C NMR spectroscopy. 16 self-cure composites, based on the redox initiator system hydroperoxide (Cumene hydroperoxide (CHP), HP1-3 or tert.-Amyl hydroperoxide (TAH))/polymerizable thiourea ATU1/copper(II) acetylacetonate, were formulated in Sulzer Mixpac two-component syringes. An equimolar hydroperoxide/ATU1 ratio was selected for each self-cure composite. The reactivity and the final double-bond conversions obtained with these two-component materials was assessed using RT-FTIR spectroscopy. The flexural strength and modulus were measured using a three-point bending setup, after storage of the specimens for 45 min at 37 °C (dry) and for 24 h in water at 37 °C. The working time of each self-cure composite was measured using an oscillating rheometer. RESULTS: CHP derivatives bearing an electron withdrawing group (HP2: ester or HP3: nitrile) in the para position were found to be more reactive than CHP, whereas the compound bearing an electron donating group (tert-butyl, HP1) was less reactive; molecular modelling data were reported for a better understanding of this structure/reactivity/efficiency relationship. All CHP derivatives were more reactive than the aliphatic hydroperoxide TAH. Excellent mechanical properties were obtained with self-cure composites containing either CHP or a para-functionalized CHP derivative. By carefully selecting the amounts of oxidizing/reducing agents and metal catalyst, suitable working times can be obtained with all evaluated hydroperoxides. HP3, thanks to its high reactivity, is nonetheless the most promising compound. SIGNIFICANCE: The curing rate of self-cure composites can be adapted by modifying the structure of the hydroperoxide. In agreement with molecular modelling data, the incorporation of CHP derivatives bearing an electron withdrawing group in the para position is particularly attractive. Indeed, due to a significant reactivity enhancement, the desired properties (working time, flexural strength/modulus) can be obtained by incorporating moderate amounts of hydroperoxide/acylthiourea as well as particularly low contents of metal catalyst to the two-component dental materials.


Assuntos
Resinas Compostas , Peróxido de Hidrogênio , Teste de Materiais , Resinas Compostas/química , Peróxido de Hidrogênio/química , Resistência à Flexão , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Molecular , Derivados de Benzeno/química , Módulo de Elasticidade , Materiais Dentários/química , Oxirredução , Espectroscopia de Ressonância Magnética , Polimerização
19.
J Am Chem Soc ; 135(45): 16938-47, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24111491

RESUMO

The B-S bond in N-heterocyclic carbene (NHC)-boryl sulfides can be cleaved homolytically to NHC-boryl or NHC-thioboryl and thiyl radicals using light, either directly around 300 nm or with a sensitizer at a longer wavelength (>340 nm). In contrast, the electrochemical reductive cleavage of the B-S bond is difficult. This easy photolytic cleavage makes the NHC-boryl sulfides good type I photopolymerization initiators for the polymerization of acrylates under air.

20.
J Am Chem Soc ; 135(28): 10484-91, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23718209

RESUMO

Reactions of 1,3-dimethylimidazol-2-ylidene-borane (diMe-Imd-BH3) and related NHC-boranes with diaryl and diheteroaryl disulfides provide diverse NHC-boryl monosulfides (diMe-Imd-BH2SAr) and NHC-boryl disulfides (diMe-Imd-BH(SAr)2). Heating in the dark with 1 equiv of disulfide favors monosulfide formation, while irradiation with 2 equiv disulfide favors disulfide formation. With heteroaryl disulfides, the NHC-borane in the primary NHC-boryl sulfide product migrates from sulfur to nitrogen to give new products with a thioamide substructure. Most substitution reactions are thought to proceed through radical chains in which homolytic substitution of a disulfide by an NHC-boryl radical is a key step. However, with electrophilic disulfides under dark conditions, a competing ionic path may also be possible.


Assuntos
Boranos/química , Dissulfetos/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Radicais Livres/síntese química , Radicais Livres/química , Compostos Heterocíclicos/síntese química , Metano/síntese química , Metano/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa