RESUMO
Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.
Assuntos
Heterogeneidade Genética , Genômica , Imageamento Tridimensional , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Células Clonais/metabolismo , Células Clonais/patologia , Sequenciamento do Exoma , Aprendizado de Máquina , Mutação , Pâncreas/anatomia & histologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fluxo de Trabalho , Progressão da Doença , Detecção Precoce de Câncer , Oncogenes/genéticaRESUMO
A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.
Assuntos
Imageamento Tridimensional , Neoplasias Pancreáticas , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pancreáticas/patologia , Pâncreas/patologiaRESUMO
Using CODA, a technique for three-dimensional reconstruction of large tissues, Kiemen et al. report observation of a microscopic focus of pancreatic cancer found in the vasculature of grossly normal human pancreas tissue resected adjacent to a large tumour. They use TP53 and SMAD4 staining to relate the small focus to the primary tumour. This report describes a represents a probable case of intraparenchymal metastasis of pancreatic cancer, revealing a probable cause of local recurrence.
Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias PancreáticasRESUMO
Here we describe the combination of an archetypal redox-active metal sulfide cluster, Fe4S4, with an organic linker, 1,4-benzenedithiolate, to prepare coordination polymers containing infinite chains of Fe4S4 clusters. The crystal structures of two solid materials have been solved from synchrotron X-ray powder diffraction data using simulated annealing and refined by a least-squares Rietveld refinement procedure. The electronic properties of these chains have also been characterized by UV-visible and Mössbauer spectroscopies. Additional experiments demonstrated that these chains can be solubilized by variation of the countercation and that the chain structure is maintained in solution. The redox-activity of the Fe4S4 clusters can be accessed with chemical reagents. Introduction of charge carriers by reduction of the Fe4S4 clusters is found to increase the electrical conductivity of the materials by up to 4 orders of magnitude. These results highlight the utility of Fe4S4 clusters as redox-active building blocks in preparing new classes of coordination polymers.
RESUMO
OBJECTIVE: The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. MATERIALS AND METHODS: In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. RESULTS: Twenty-seven patients (mean age 64.0 ± 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor ( r = 0.65, P < 0.001); and collagen ( r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar ( r = -0.85, P < 0.001) content. CONCLUSIONS: Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.
Assuntos
Tecido Adiposo , Imageamento por Ressonância Magnética , Pâncreas Exócrino , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Tecido Adiposo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Pâncreas Exócrino/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Estudos RetrospectivosRESUMO
Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.