Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Immunol ; 205(1): 251-260, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32444389

RESUMO

Over the first days of polymicrobial sepsis, there is robust activation of the innate immune system, causing the appearance of proinflammatory cytokines and chemokines, along with the appearance of extracellular histones, which are highly proinflammatory and prothrombotic. In the current study, we studied different innate immune responses in mice with knockout (KO) of complement protein 6 (C6). Polymorphonuclear neutrophils (PMNs) from these KO mice had defective innate immune responses, including defective expression of surface adhesion molecules, generation of superoxide anion, and appearance of reactive oxygen species and histone release after activation of PMNs, along with defective phagocytosis. In addition, in C6-/- mice, the NLRP3 inflammasome was defective both in PMNs and in macrophages. When these KO mice were subjected to polymicrobial sepsis, their survival was improved, associated with reduced levels in the plasma of proinflammatory cytokines and chemokines and lower levels of histones in plasma. In addition, sepsis-induced cardiac dysfunction was attenuated in these KO mice. In a model of acute lung injury induced by LPS, C6-/- mice showed reduced PMN buildup and less lung epithelial/endothelial cell dysfunction (edema and hemorrhage). These data indicate that C6-/- mice have reduced innate immune responses that result in less organ injury and improved survival after polymicrobial sepsis.


Assuntos
Lesão Pulmonar Aguda/imunologia , Cardiomiopatias/imunologia , Coinfecção/imunologia , Complemento C6/metabolismo , Imunidade Inata , Sepse/imunologia , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/patologia , Animais , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Coinfecção/complicações , Coinfecção/diagnóstico , Coinfecção/patologia , Complemento C6/genética , Modelos Animais de Doenças , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sepse/complicações , Sepse/diagnóstico , Sepse/genética , Índice de Gravidade de Doença
2.
J Immunol ; 197(6): 2353-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521340

RESUMO

There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.


Assuntos
Coinfecção/imunologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Sepse/imunologia , Sepse/fisiopatologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/imunologia , Coinfecção/microbiologia , Coinfecção/fisiopatologia , Complemento C5a/imunologia , Citoplasma/química , Citoplasma/metabolismo , Coração/fisiopatologia , Camundongos , Miócitos Cardíacos/microbiologia , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sepse/complicações
3.
FASEB J ; 30(12): 3997-4006, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27543123

RESUMO

Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1ß. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1ß. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1ß proteins in CMs. CLP caused substantial increases in mRNAs for IL-1ß and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1ß and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1ß. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.


Assuntos
Complemento C5a/metabolismo , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/metabolismo , Animais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
J Immunol ; 194(3): 868-72, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539817

RESUMO

In the early stages of sepsis, lymphocytes undergo apoptosis, resulting in lymphopenia and immunosuppression. The trigger for septic lymphopenia is unknown. Using the polymicrobial model of murine sepsis, we investigated the role of C5a receptors in septic lymphopenia. In wild-type mice, cecal ligation and puncture resulted in splenocyte apoptosis and significant lymphopenia after 3 d, which was not observed in C5aR1(-/-) or C5aR2(-/-) mice. Our data show that mouse neutrophils exposed to recombinant mouse C5a cause release of histones in a dose-dependent and time-dependent manner. Histone levels in spleen were significantly elevated following cecal ligation and puncture but were reduced by the absence of C5aR1. Histones induced significant lymphocyte apoptosis in vitro. Ab-mediated neutralization of histones prevented the development of lymphopenia in sepsis. Together, these results describe a new pathway of septic lymphopenia involving complement and extracellular histones. Targeting of this pathway may have therapeutic benefit for patients with sepsis or other serious illness.


Assuntos
Linfopenia/etiologia , Linfopenia/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sepse/complicações , Animais , Apoptose , Complemento C5a/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Espaço Extracelular , Histonas/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética
5.
FASEB J ; 29(5): 2185-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25681459

RESUMO

The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.


Assuntos
Cardiomiopatias/etiologia , Modelos Animais de Doenças , Histonas/efeitos adversos , Mitocôndrias/patologia , Sepse/complicações , Animais , Cálcio/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Proteínas de Transporte/fisiologia , Caspase 1/fisiologia , Células Cultivadas , Histonas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sepse/sangue , Sepse/patologia , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/fisiologia
6.
J Pineal Res ; 60(4): 405-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888116

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. Melatonin is a well-known anti-inflammatory molecule, which has proven to be effective in ALI induced by many conditions. Emerging studies suggest that the NLRP3 inflammasome plays a critical role during ALI. How melatonin directly blocks activation of the NLRP3 inflammasome in ALI remains unclear. In this study, using an LPS-induced ALI mouse model, we found intratracheal (i.t.) administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung. During ALI, the NLRP3 inflammasome is significantly activated with a large amount of IL-1ß and the activated caspase-1 occurring in the lung. Melatonin inhibits the activation of the NLRP3 inflammasome by both suppressing the release of extracellular histones and directly blocking histone-induced NLRP3 inflammasome activation. Notably, i.t. route of melatonin administration opens a more efficient therapeutic approach for treating ALI.


Assuntos
Lesão Pulmonar Aguda/patologia , Anti-Inflamatórios/farmacologia , Inflamassomos/efeitos dos fármacos , Melatonina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lesão Pulmonar Aguda/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Microtomografia por Raio-X
7.
J Immunol ; 192(12): 5974-83, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24795455

RESUMO

The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1ß and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1ß, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1ß levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1ß levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug.


Assuntos
Lesão Pulmonar Aguda/imunologia , Proteínas de Transporte/imunologia , Inflamassomos/imunologia , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 1/imunologia , Modelos Animais de Doenças , Histonas/genética , Histonas/imunologia , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos/patologia
8.
Mediators Inflamm ; 2016: 1340156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382187

RESUMO

C5a is an inflammatory mediator generated by complement activation that positively regulates various arms of immune defense, including Toll-like receptor 4 (TLR4) signaling. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is activated by pathogen products and cellular/tissue damage products and is a major contributor of IL-1ß. In this study, we investigate whether C5a modulates lipopolysaccharide- (LPS-) induced NLRP3 inflammasome activation in myeloid cells. Appearance of plasma IL-1ß during endotoxemia was reduced in C5aR1(-/-) mice when compared to wild-type mice. In vitro, C5a significantly enhanced LPS-induced production of IL-1ß in bone marrow Ly6C-high inflammatory monocytes, accompanied by augmented intracellular pro-IL-1ß expression. This effect was abolished during p38 blockade by SB 203580 and in the absence of C5aR1. Conversely, C5a suppressed LPS-induced macrophage production of IL-1ß, which was accompanied by attenuated levels of pro-IL-1ß, NLRP3, and caspase-1 expression. C5a's suppressive effects were negated during phosphoinositide 3-kinase (PI3K) inhibition by wortmannin but were largely preserved in the absence of C5aR1. Thus, C5a bidirectionally amplifies TLR4-mediated NLRP3 inflammasome activation in monocytes while suppressing this pathway in macrophages. However, as C5aR1 deficiency attenuates the IL-1ß response to LPS challenge in vivo, our results suggest overall that C5a augments physiologic inflammasome responses.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Animais , Western Blotting , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Complemento C5a/metabolismo , Complemento C5a/farmacologia , Modelos Animais de Doenças , Endotoxemia/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Neurobiol Dis ; 67: 57-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657919

RESUMO

Proinflammatory mediators trigger intensive postischemic inflammatory remodeling of the blood-brain barrier (BBB) including extensive brain endothelial cell surface and junctional complex changes. Junctional adhesion molecule-A (JAM-A) is a component of the brain endothelial junctional complex with dual roles: paracellular route occlusion and regulating leukocyte docking and migration. The current study examined the contribution of JAM-A to the regulation of leukocyte (neutrophils and monocytes/macrophages) infiltration and the postischemic inflammatory response in brain ischemia/reperfusion (I/R injury). Brain I/R injury was induced by transient middle cerebral artery occlusion (MCAO) for 30min in mice followed by reperfusion for 0-5days, during which time JAM-A antagonist peptide (JAM-Ap) was administered. The peptide, which inhibits JAM-A/leukocyte interaction by blocking the interaction of the C2 domain of JAM-A with LFA on neutrophils and monocytes/macrophages, attenuated I/R-induced neutrophil and monocyte infiltration into brain parenchyma. Consequently, mice treated with JAM-A peptide during reperfusion had reduced expression (~3-fold) of inflammatory mediators in the ischemic penumbra, reduced infarct size (94±39 vs 211±38mm3) and significantly improved neurological score. BBB hyperpermeability was also reduced. Collectively, these results indicate that JAM-A has a prominent role in regulating leukocyte infiltration after brain I/R injury and could be a new target in limiting post-ischemic inflammation.


Assuntos
Isquemia Encefálica/metabolismo , Movimento Celular , Encefalite/metabolismo , Molécula A de Adesão Juncional/antagonistas & inibidores , Leucócitos/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/fisiopatologia , Encefalite/fisiopatologia , Infarto da Artéria Cerebral Média/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Traumatismo por Reperfusão/fisiopatologia
10.
FASEB J ; 27(12): 5010-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23982144

RESUMO

We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.


Assuntos
Lesão Pulmonar Aguda/imunologia , Ativação do Complemento , Complemento C5a/imunologia , Espaço Extracelular/metabolismo , Histonas/imunologia , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/genética , Citocinas/metabolismo , Espaço Extracelular/imunologia , Histonas/metabolismo , Humanos , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Ratos , Ratos Sprague-Dawley , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo
11.
J Immunol ; 188(7): 3223-36, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387549

RESUMO

L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.


Assuntos
Quimiocina CCL21/fisiologia , Quimiotaxia de Leucócito/fisiologia , Selectina L/fisiologia , Subpopulações de Linfócitos T/citologia , Animais , Anticorpos Monoclonais/farmacologia , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Endoteliais/citologia , Memória Imunológica , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Selectina L/genética , Selectina L/imunologia , Linfonodos/citologia , Mesentério/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/fisiologia , Receptores CCR7/biossíntese , Receptores CCR7/genética , Receptores CCR7/fisiologia , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Estilbenos/farmacologia , Quinase Syk
12.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L863-72, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23564505

RESUMO

Zonulin is a protein involved in the regulation of tight junctions (TJ) in epithelial or endothelial cells. Zonulin is known to affect TJ in gut epithelial cells, but little is known about its influences in other organs. Prehaptoglobin2 has been identified as zonulin and is related to serine proteases (MASPs, C1qrs) that activate the complement system. The current study focused on the role of zonulin in development of acute lung injury (ALI) in C57BL/6 male mice following intrapulmonary deposition of IgG immune complexes. A zonulin antagonist (AT-1001) and a related peptide with permeability agonist activities (AT-1002) were employed and given intratracheally or intravenously. Also, zonulin was blocked in lung with a neutralizing antibody. In a dose-dependent manner, AT-1001 or zonulin neutralizing antibody attenuated the intensity of ALI (as quantitated by albumin leak, neutrophil accumulation, and proinflammatory cytokines). A similar pattern was found using the bacterial lipopolysaccharide model of ALI. Using confocal microscopy on sections of injured lungs, staining patterns for TJ proteins were discontinuous, reduced, and fragmented. As expected, the leak of blood products into the alveolar space confirmed the passage of 3 and 20 kDa dextran, and albumin. In contrast to AT-1001, application of the zonulin agonist AT-1002 intensified ALI. Zonulin both in vitro and in vivo induced generation of complement C3a and C5a. Collectively, these data suggest that zonulin facilitates development of ALI both by enhancing albumin leak and complement activation as well as increased buildup of neutrophils and cytokines during development of ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Toxina da Cólera/genética , Proteínas do Sistema Complemento/agonistas , Precursores de Proteínas/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Complexo Antígeno-Anticorpo/farmacologia , Toxina da Cólera/agonistas , Toxina da Cólera/antagonistas & inibidores , Toxina da Cólera/imunologia , Ativação do Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Haptoglobinas , Imunoglobulina G/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Precursores de Proteínas/agonistas , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/imunologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/patologia , Traqueia/efeitos dos fármacos , Traqueia/imunologia , Traqueia/patologia
13.
FASEB J ; 26(5): 2137-44, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22318967

RESUMO

These studies were undertaken to extend emerging evidence that ß(2) adrenergic receptor (ß(2)AR) agonists, in addition to their bronchorelaxing effects, may have broad anti-inflammatory effects in the lung following onset of experimental acute lung injury (ALI). Young male C57BL/6 mice (25 g) developed ALI following airway deposition of bacterial LPS or IgG immune complexes in the absence or presence of appropriate stereoisomers (enantiomers) of ß(2)AR agonists, albuterol or formoterol. Endpoints included albumin leak into lung and buildup of polymorphonuclear neutrophils and cytokines/chemokines in bronchoalveolar fluids. Both ß(2)AR agonists suppressed lung inflammatory parameters (IC(50)=10(-7) M). Similar effects of ß(2)AR agonists on mediator release were found when mouse macrophages were stimulated in vitro with LPS. The protective effects were associated with reduced activation (phosphorylation) of JNK but not of other signaling proteins. Collectively, these data suggest that ß(2)AR agonists have broad anti-inflammatory effects in the setting of ALI. While ß(2)AR agonists suppress JNK activation, the extent to which this can explain the blunted lung inflammatory responses in the ALI models remains to be determined.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Agonistas Adrenérgicos beta/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
14.
Bioconjug Chem ; 21(3): 496-504, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20163170

RESUMO

A new type of multifunctional unimolecular micelle drug nanocarrier based on amphiphilic hyperbranched block copolymer for targeted cancer therapy was developed. The core of the unimolecular micelle was a hyperbranched aliphatic polyester, Boltorn H40. The inner hydrophobic layer was composed of random copolymer of poly(ε-caprolactone) and poly(malic acid) (PMA-co-PCL) segments, while the outer hydrophilic shell was composed of poly(ethylene glycol) (PEG) segments. Active tumor-targeting ligands, i.e., folate (FA), were selectively conjugated to the distal ends of the PEG segments. An anticancer drug, i.e., doxorubicin (DOX) molecules, was conjugated onto the PMA segments with pH-sensitive drug binding linkers for pH-triggered drug release. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis showed that the unimolecular micelles were uniform with a mean hydrodynamic diameter around 25 nm. The drug loading content was determined to be 14.2%. The drug release profile, cell uptake and distribution, and cytotoxicity of the unimolecular micelles were evaluated in vitro. The folate-conjugated micelles can be internalized by the cancer cells via folate-receptor-mediated endocytosis; thus, they exhibited enhanced cell uptake and cytotoxicity. At pH 7.4, the physiological condition of bloodstream, DOX conjugated onto the unimolecular micelles exhibited excellent stability; however, once the micelles were internalized by the cancer cells, the pH-sensitive hydrazone linkages were cleavable by the intracellular acidic environment, which initially caused a rapid release of DOX. These findings indicate that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Ácido Fólico/química , Micelas , Nanoestruturas/química , Poliésteres/farmacologia , Polímeros/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Fólico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Poliésteres/síntese química , Poliésteres/química , Relação Estrutura-Atividade , Propriedades de Superfície
15.
J Innate Immun ; 9(3): 300-317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28171866

RESUMO

Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1ß was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.


Assuntos
Histonas/imunologia , Inflamassomos/metabolismo , Inflamação/imunologia , Pulmão/imunologia , Fagócitos/imunologia , Animais , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Immunol Res ; 61(3): 177-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25680340

RESUMO

Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.


Assuntos
Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Macrófagos Peritoneais/imunologia , Neutrófilos/imunologia , Sepse/metabolismo , Animais , Ceco/cirurgia , Células Cultivadas , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/química , Histonas/química , Humanos , Infusões Intravenosas , Fígado/imunologia , Fígado/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Sepse/imunologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-26052542

RESUMO

Despite decades of research, acute respiratory distress syndrome (ARDS) remains an important clinical challenge due to an incomplete understanding of the pathophysiological mechanisms. No FDA-approved drug therapy currently exists for treatment of humans with ARDS. There is accumulating evidence in rodents and humans suggesting that extracellular histones are strong drivers of inflammation and tissue damage. We recently described an important role for extracellular histones during acute lung injury (ALI) in mice (Bosmann et al., FASEB J. 27:5010-5021 (2013)). Extracellular histones were detected in bronchoalveolar lavage fluids (BALF) from patients with ARDS but not in BALF from non-ARDS patients in intensive care units. Extracellular histones were also detected in BALF from mice during experimental ALI. The presence of extracellular histones was dependent on the two C5a receptors (C5aR and C5L2) and availability of neutrophils. Extracellular histones were highly pro-inflammatory, and caused severe damage to respiratory function. Intratracheal instillation of histones resulted in pro-inflammatory mediator production, epithelial cell damage, disturbances in alveolar-capillary gas exchange, lung consolidation, activation of the coagulation cascade, and in some cases, death. Antibody-mediated neutralization of extracellular histones attenuated C5a-induced ALI. Together, these data suggested a prominent role for extracellular histones in the pathophysiology of ALI. The predominant source of histones in ALI may be neutrophils that have been activated by C5a to form neutrophil extracellular traps (NETs). Therapeutic targeting of extracellular histones may provide a novel approach to combat ARDS in humans.

18.
Transl Respir Med ; 2: 1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25984445

RESUMO

Acute respiratory distress syndrome (ARDS) in humans involves ≥ 200,000 individuals in the United States, and has a mortality rate (40%) for which no specific drug has been approved for use in humans. We have studied experimental acute lung injury (ALI) in mice following airway deposition of bacterial lipopolysaccharide (LPS) or the recombinant mouse complement anaphylatoxin, C5a. As ALI developed over 6 hr, extracellular histones appeared in bronchoalveolar lavage fluids (BALF). Extracellular histone appearance required both C5a receptors (C5aR, C5L2) as well as neutrophils (PMNs) and lung macrophages, as genetic loss of either C5a receptor or depletion of PMNs or macrophages reduced histone levels found in BALF during ALI. It is possible that extracellular histones were derived from formation of neutrophil extracellular traps (NETs) in lung after PMN contact with C5a. When purified histones were delivered to lung via the airways, intense inflammatory injury ensued and type II cells developed large blebs indicating cellular damage and apoptosis. Detailed physiological measurements revealed severe disruption of blood/alveolar gas exchange. These data suggest a key role for histones in development of experimental ALI.

19.
J Innate Immun ; 6(5): 695-705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24861731

RESUMO

Sepsis, both in humans and in rodents, is associated with persistent immunosuppression accompanied by defects in innate immunity during the acute phase of sepsis. Mice were rendered septic by cecal ligation and puncture (CLP) followed by the induction of acute lung injury, employing distal airway deposition of IgG immune complexes, in order to quantitatively evaluate innate immune responses following the induction of sepsis. Suppression of innate immune responses in the lung occurred as early as 12 h after CLP and up to 21 days thereafter. The mechanism of innate immune defects included a reduced leak of albumin into the lungs together with reduced levels of tumor necrosis factor in bronchoalveolar lavage fluids and increased levels of interleukin-10 that were persistent. Bone marrow-derived neutrophils (polymorphonuclear neutrophils; PMNs) from CLP mice also had reduced levels of the activation marker CD11b and a depressed respiratory burst following stimulation in vitro. These results were not observed in mice with endotoxemia, where the innate inflammatory response was preserved. However, sustained lymphopenia was present in both models, suggesting differential regulation of innate and adaptive immunity in the two sepsis models. These data indicate that CLP induced a prolonged suppression of inflammatory responses both in the lung and systemically, as defined by bone marrow-derived PMN dysfunction.


Assuntos
Lesão Pulmonar Aguda/imunologia , Endotoxemia/imunologia , Pulmão/patologia , Neutrófilos/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Ceco/cirurgia , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Humanos , Imunoglobulina G/administração & dosagem , Terapia de Imunossupressão , Interleucina-10/metabolismo , Lipopolissacarídeos/administração & dosagem , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
20.
J Innate Immun ; 6(5): 607-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642449

RESUMO

The main drivers of acute inflammation are macrophages, which are known to have receptors for catecholamines. Based on their function, macrophages are broadly categorized as having either M1 (proinflammatory) or M2 phenotypes (anti-inflammatory). In this study, we investigated catecholamine-induced alterations in the phenotype of activated macrophages. In the presence of lipopolysaccharide (LPS), mouse peritoneal macrophages acquired an M1 phenotype. However, the copresence of LPS and either epinephrine or norepinephrine resulted in a strong M2 phenotype including high levels of arginase-1 and interleukin-10, and a reduced expression of M1 markers. Furthermore, epinephrine enhanced macrophage phagocytosis and promoted type 2 T-cell responses in vitro, which are known features of M2 macrophages. Analysis of M2 subtype-specific markers indicated that LPS and catecholamine-cotreated macrophages were not alternatively activated but were rather of the regulatory macrophage subtype. Interestingly, catecholamines signaled through the ß2-adrenergic receptor but not the canonical cAMP/protein kinase A signaling pathway. Instead, the M2 pathway required an intact phosphoinositol 3-kinase pathway. Blockade of the ß2-adrenergic receptor reduced survival and enhanced injury in mouse models of endotoxemia and LPS-induced acute lung injury, respectively. These results demonstrate a role for the ß2-adrenergic receptor in promoting the M2 macrophage phenotype.


Assuntos
Lesão Pulmonar Aguda/imunologia , Endotoxemia/imunologia , Macrófagos Peritoneais/imunologia , Receptores Adrenérgicos beta 2/metabolismo , Células Th2/imunologia , Animais , Catecolaminas/metabolismo , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Epinefrina/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Fagocitose , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa