Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
CA Cancer J Clin ; 71(2): 107-139, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326126

RESUMO

We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.


Assuntos
Medicina Baseada em Evidências/organização & administração , Programas de Rastreamento/organização & administração , Oncologia/organização & administração , Neoplasias/terapia , Lacunas da Prática Profissional , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Efeitos Psicossociais da Doença , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/tendências , Medicina Baseada em Evidências/métodos , Medicina Baseada em Evidências/tendências , Humanos , Programas de Rastreamento/métodos , Programas de Rastreamento/tendências , Oncologia/métodos , Oncologia/tendências , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidade , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Estados Unidos/epidemiologia
2.
J Infect Dis ; 223(8): 1367-1375, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845315

RESUMO

BACKGROUND: A vaccine against group A Streptococcus (GAS) has been actively pursued for decades. The surface receptor Shr is vital in GAS heme uptake and provides an effective target for active and passive immunization. Here, we isolated human monoclonal antibodies (mAbs) against Shr and evaluated their efficacy and mechanism. METHODS: We used a single B-lymphocyte screen to discover the mAbs TRL186 and TRL96. Interactions of the mAbs with whole cells, proteins, and peptides were investigated. Growth assays and cultured phagocytes were used to study the mAbs' impact on heme uptake and bacterial killing. Efficacy was tested in prophylactic and therapeutic vaccination using intraperitoneal mAb administration and GAS challenge. RESULTS: Both TRL186 and TRL96 interact with whole GAS cells, recognizing the NTR and NEAT1 domains of Shr, respectively. Both mAbs promoted killing by phagocytes in vitro, but prophylactic administration of only TRL186 increased mice survival. TRL186 improved survival also in a therapeutic mode. TRL186 but not TRL96 also impeded Shr binding to hemoglobin and GAS growth on hemoglobin iron. CONCLUSIONS: Interference with iron acquisition is central for TRL186 efficacy against GAS. This study supports the concept of antibody-based immunotherapy targeting the heme uptake proteins to combat streptococcal infections.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Hemeproteínas , Infecções Estreptocócicas , Animais , Heme , Hemoglobinas , Humanos , Imunoglobulinas , Ferro , Camundongos , Infecções Estreptocócicas/prevenção & controle , Streptococcus pyogenes/imunologia
3.
Mol Pharmacol ; 91(3): 197-207, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28031332

RESUMO

RGS10 has emerged as a key regulator of proinflammatory cytokine production in microglia, functioning as an important neuroprotective factor. Although RGS10 is normally expressed in microglia at high levels, expression is silenced in vitro following activation of TLR4 receptor. Given the ability of RGS10 to regulate inflammatory signaling, dynamic regulation of RGS10 levels in microglia may be an important mechanism to tune inflammatory responses. The goals of the current study were to confirm that RGS10 is suppressed in an in vivo inflammatory model of microglial activation and to determine the mechanism for activation-dependent silencing of Rgs10 expression in microglia. We demonstrate that endogenous RGS10 is present in spinal cord microglia, and RGS10 protein levels are suppressed in the spinal cord in a nerve injury-induced neuropathic pain mouse model. We show that the histone deacetylase (HDAC) enzyme inhibitor trichostatin A blocks the ability of lipopolysaccharide (LPS) to suppress Rgs10 transcription in BV-2 and primary microglia, demonstrating that HDAC enzymes are required for LPS silencing of Rgs10 Furthermore, we used chromatin immunoprecipitation to demonstrate that H3 histones at the Rgs10 proximal promoter are deacetylated in BV-2 microglia following LPS activation, and HDAC1 association at the Rgs10 promoter is enhanced following LPS stimulation. Finally, we have shown that sphingosine 1-phosphate, an endogenous microglial signaling mediator that inhibits HDAC activity, enhances basal Rgs10 expression in BV-2 microglia, suggesting that Rgs10 expression is dynamically regulated in microglia in response to multiple signals.


Assuntos
Inativação Gênica , Histona Desacetilases/metabolismo , Microglia/metabolismo , Proteínas RGS/genética , Transcrição Gênica , Acetilação/efeitos dos fármacos , Animais , Azacitidina/farmacologia , Linhagem Celular , Quimiocina CXCL2/metabolismo , Modelos Animais de Doenças , Inativação Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/farmacologia , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Proteínas RGS/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 16(2): 4343-61, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25690042

RESUMO

Transcriptional activation of major histocompatibility complex (MHC) I and II molecules by the cytokine, interferon γ (IFN-γ), is a key step in cell-mediated immunity against pathogens and tumors. Recent evidence suggests that suppression of MHC I and II expression on multiple tumor types plays important roles in tumor immunoevasion. One such tumor is malignant melanoma, a leading cause of skin cancer-related deaths. Despite growing awareness of MHC expression defects, the molecular mechanisms by which melanoma cells suppress MHC and escape from immune-mediated elimination remain unknown. Here, we analyze the dysregulation of the Janus kinase (JAK)/STAT pathway and its role in the suppression of MHC II in melanoma cell lines at the radial growth phase (RGP), the vertical growth phase (VGP) and the metastatic phase (MET). While RGP and VGP cells both express MHC II, MET cells lack not only MHC II, but also the critical transcription factors, interferon response factor (IRF) 1 and its upstream activator, signal transducer and activator of transcription 1 (STAT1). Suppression of STAT1 in vitro was also observed in patient tumor samples, suggesting STAT1 silencing as a global mechanism of MHC II suppression and immunoevasion.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Melanoma/patologia , Fator de Transcrição STAT1/genética , Neoplasias Cutâneas/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/farmacologia , Janus Quinases/metabolismo , Melanoma/metabolismo , Mutação , Fosforilação/efeitos dos fármacos , Receptores de Interferon/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Receptor de Interferon gama , Melanoma Maligno Cutâneo
5.
Int J Mol Sci ; 16(12): 30405-21, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26703577

RESUMO

Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8⁺ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Bortezomib/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Radiação Ionizante , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos da radiação , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Células HCT116 , Humanos , Receptores de Morte Celular/metabolismo
6.
Biochim Biophys Acta ; 1809(2): 150-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21184853

RESUMO

The ubiquitin proteasome system (UPS) regulates perhaps the most intriguing balance in all of biology: how cells control protein function and malfunction in order to regulate, and eventually eliminate, the old and error prone while simultaneously synthesizing and orchestrating the new. In light of the growing notion that ubiquitination and the 26S proteasome are central to a multiplicity of diverse cellular functions, we discuss here the proteolytic and non-proteolytic roles of the UPS in regulating pathways ultimately involved in protein synthesis and activity including roles in epigenetics, transcription, and post-translational modifications. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!


Assuntos
Regulação da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Ubiquitina/metabolismo , Animais , Humanos , Modelos Biológicos
7.
Biochim Biophys Acta ; 1789(11-12): 691-701, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19660582

RESUMO

Studies indicate that the 19S proteasome functions in the epigenetic regulation of transcription. We have shown that as in yeast, components of the 19S proteasome are crucial for regulating inducible histone acetylation events in mammalian cells. The 19S ATPase Sug1 binds to histone acetyltransferases and to acetylated histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at mammalian promoters. Research in yeast further indicates that the ortholog of Sug1, Rpt6, is a link between ubiquitination of histone H2B and H3 lysine 4 trimethylation (H3K4me3). To characterize the role that the 19S proteasome plays in regulating additional activating modifications, we examined the methylation and ubiquitination status of histones at inducible mammalian genes. We find that Sug1 is crucial for regulating histone H3K4me3 and H3R17me2 at the cytokine inducible MHC-II and CIITA promoters. In the absence of Sug1, histone H3K4me3 and H3R17me2 are dramatically decreased, but the loss of Sug1 has no significant effect on H3K36me3 or H2BK120ub. Our observation that a subunit of hCompass interacts with additional activating histone modifying enzymes, but fails to bind the CIITA promoter in the absence of Sug1, strongly implicates Sug1 in recruiting enzyme complexes responsible for initiating mammalian transcription.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Interferon gama/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Antígenos HLA-DR/genética , Cadeias alfa de HLA-DR , Células HeLa , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Lisina/metabolismo , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitinação
8.
Mol Immunol ; 45(8): 2214-24, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18215421

RESUMO

Emerging evidence in yeast suggests roles for ATPases of the 19S proteasome as mediators of transcriptional systems through their association with actively transcribed promoters, facilitation of clearance of paused elongation complexes and recruitment of coactivators. Although 19S subunits also regulate mammalian transcription, their role in recruiting transcription factors remains unclear. Here, we demonstrate for the first time a role for the 19S proteasome ATPase Sug1 in regulating transcription of the critical adaptive immune gene, MHC class II. Sug1 associates with the class II transactivator, CIITA, and with the MHC class II proximal promoter. In the absence of Sug1, HLA-DR promoter activity and MHC class II transcription are decreased. Critically, CIITA association with the MHC II promoter is dramatically decreased when Sug1 expression is reduced, even under conditions of proteasome inhibition. In contrast to the rapid promoter association of the 19S subunit, a 20S proteasome subunit associates with the MHC class II proximal promoter following prolonged cytokine stimulation and its association corresponds with pronounced promoter disassociation of CIITA. Taken together, these data demonstrate that both 19S and 20S subunits of the 26S proteasome play specific and critical roles in regulating CIITA activity and MHC class II transcription.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interferon gama/farmacologia , Proteínas com Domínio LIM , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Inibidores de Proteassoma , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Methods Mol Biol ; 1934: 191-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31256381

RESUMO

Mass spectrometric methods of determining protein ubiquitination are described. Characteristic mass shifts and fragment ions indicating ubiquitinated lysine residues in tryptic and gluC digests are discussed. When a ubiquitinated protein is enzymatically digested, a portion of the ubiquitin side chain remains attached to the modified lysine. This "tag" can be used to distinguish a ubiquitinated peptide from the unmodified version, and can be incorporated into automated database searching. Several tags are discussed, the GGK and LRGGK tags, resulting from complete and incomplete tryptic digestion of the protein, and the STLHLVLRLRGG tag from a gluC-digested protein.A ubiquitinated peptide has two N-termini-one from the original peptide and the other from the ubiquitin side chain. Thus, it is possible to have two series of b ions and y ions, the additional series is the one that includes fragments containing portions of the ubiquitin side chain, and any diagnostic ions for the modification must include portions of this side chain. Fragment ions involving any part of the "normal" peptide will vary in mass according to the peptide being modified and will therefore not be of general diagnostic use. These diagnostic ions, found through examination of the MS/MS spectra of model ubiquitinated tryptic and gluC peptides, have not previously been reported. These ions can be used to trigger precursor ion scanning in automated MS/MS data acquisition scanning modes.


Assuntos
Espectrometria de Massas , Proteínas/química , Cromatografia de Afinidade , Cromatografia Líquida , Íons/química , Espectrometria de Massas/métodos , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitinação
10.
Methods Mol Biol ; 446: 109-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18373253

RESUMO

Mass spectrometric methods of determining protein ubiquitination are described. Characteristic mass shifts and fragment ions indicating ubiquitinated lysine residues in tryptic and gluC digests are discussed. When a ubiquitinated protein is enzymatically digested, a portion of the ubiquitin side chain remains attached to the modified lysine. The ubiquitinated peptide thus has two N-termini - one from the original peptide and one from the ubiquitin side chain. Thus, it is possible to have two series of b ions and y ions, the additional series is the one that includes fragments containing portions of the ubiquitin side chain. Any diagnostic ions for the modification must include portions of this side chain. Fragment ions involving any part of the "normal" peptide will vary in mass according to the peptide being modified and will therefore not be of general diagnostic use. These diagnostic ions, found through examination of the MS/MS spectra of model ubiquitinated tryptic and gluC peptides, have not previously been reported. These ions can be used to trigger precursor ion scanning in automated MS/MS data acquisition scanning modes.


Assuntos
Proteínas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquitina/metabolismo , Cromatografia Líquida
11.
Mol Cell Biol ; 23(9): 3091-102, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697811

RESUMO

The class II transactivator (CIITA) is a master transcriptional regulator of major histocompatibility complex class II (MHC-II) promoters. CIITA does not bind DNA, but it interacts with the transcription factors RFX5, NF-Y, and CREB and associated chromatin-modifying enzymes to form an enhanceosome. This report examines the effects of histone deacetylases 1 and 2 (HDAC1/HDAC2) on MHC-II gene induction by gamma interferon (IFN-gamma) and CIITA. The results show that an inhibitor of HDACs, trichostatin A, enhances IFN-gamma-induced MHC-II expression, while HDAC1/HDAC2 inhibits IFN-gamma- and CIITA-induced MHC-II gene expression. mSin3A, a corepressor of HDAC1/HDAC2, is important for this inhibition, while NcoR, a corepressor of HDAC3, is not. The effect of this inhibition is directed at CIITA, since HDAC1/HDAC2 reduces transactivation by a GAL4-CIITA fusion protein. CIITA binds to overexpressed and endogenous HDAC1, suggesting that HDAC and CIITA may affect each other by direct or indirect association. Inhibition of HDAC activity dramatically increases the association of NF-YB and RFX5 with CIITA, the assembly of CIITA, NF-YB, and RFX5 enhanceosome, and the extent of H3 acetylation at the MHC-II promoter. These results suggest a model where HDAC1/HDAC2 affect the function of CIITA through a disruption of MHC-II enhanceosome and relevant coactivator-transcription factor association and provide evidence that CIITA may act as a molecular switch to modulate MHC-II transcription by coordinating the functions of both histone acetylases and HDACs.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Histona Desacetilases/metabolismo , Interferon gama/farmacologia , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Genes MHC da Classe II/fisiologia , Antígenos de Histocompatibilidade Classe II/genética , Histona Desacetilase 1 , Histona Desacetilase 2 , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Substâncias Macromoleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear , Regiões Promotoras Genéticas/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição de Fator Regulador X , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Transativadores/efeitos dos fármacos , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
12.
Int J Cell Biol ; 2017: 8093813, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28286521

RESUMO

The Class II Transactivator (CIITA) is essential to the regulation of Major Histocompatibility Class II (MHC II) genes transcription. As the "master regulator" of MHC II transcription, CIITA regulation is imperative and requires various posttranslational modifications (PTMs) in order to facilitate its role. Previously we identified various ubiquitination events on CIITA. Monoubiquitination is important for CIITA transactivity, while K63 linked ubiquitination is involved in crosstalk with ERK1/2 phosphorylation, where together they mediate cellular movement from the cytoplasm to nuclear region. Further, CIITA is also modified by degradative K48 polyubiquitination. However, the E3 ligase responsible for these modifications was unknown. We show CIITA ubiquitination and transactivity are enhanced with the histone acetyltransferase (HAT), p300/CBP associated factor (pCAF), and the E3 ligase region within pCAF is necessary for both. Additionally, pCAF mediated ubiquitination is independent of pCAF's HAT domain, and acetylation deficient CIITA is K48 polyubiquitinated and degraded in the presence of pCAF. Lastly, we identify the histone acetyltransferase, pCAF, as the E3 ligase responsible for CIITA's ubiquitination.

13.
Oncoimmunology ; 5(6): e1171445, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27471650

RESUMO

The functional status of CD4(+) T cells is a critical determinant of antitumor immunity. Polyfunctional CD4(+) T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4(+) T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4(+) T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4(+) T cells. These in-vitro-generated polyfunctional CD4(+) T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4(+) T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8(+) T cells and persistence of donor CD4(+) T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4(+) T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy.

14.
Methods Mol Biol ; 301: 153-73, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917631

RESUMO

Mass spectrometric methods of determining protein ubiquitination are described. Characteristic mass shifts and fragment ions indicating ubiquitinated lysine residues in tryptic and gluC digests are discussed. When a ubiquitinated protein is enzymatically digested, a portion of the ubiquitin side chain remains attached to the modified lysine. The ubiquitinated peptide thus has two N-termini- one from the original peptide and one from the ubiquitin side chain. Thus, it is possible to have two series of b ions and y ions, the additional series is the one that includes fragments containing portions of the ubiquitin side chain. Any diagnostic ions for the modification must include portions of this side chain. Fragment ions involving any part of the "normal" peptide will vary in mass according to the peptide being modified and will therefore not be of general diagnostic use. These diagnostic ions, found through examination of the MS/MS spectra of model ubiquitinated tryptic and gluC peptides, can be used to trigger precursor ion scanning in automated MS/MS data acquisition scanning modes.


Assuntos
Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ubiquitina/química , Animais , Humanos
15.
Int J Oncol ; 47(6): 2264-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458736

RESUMO

Radiation treatment is a pivotal therapy for several cancer types, including colorectal cancer. It has been shown that sublethal doses of radiation modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. We have recently shown that low dose radiation enhances expression of multiple death receptors (Fas, DR4 and DR5) and co-stimulatory molecules (4-1BBL and OX-40L) in colorectal cancer (CRC) cells; however, it is unclear how ionizing radiation (IR) enhances expression of these molecules mechanistically. In the present study, we elucidate the molecular mechanisms by which radiation controls expression of these molecules in CRC. Here we report that, enhanced expression of these genes following radiation treatment of CRC cells is due, in part, to changes in DNA methylation and histone acetylation. We observed that radiation (5 Gy) significantly increased histone acetylation at the promoter regions of 4-1BBL, Fas and DR5 but not OX-40L. However, radiation did not induce changes in the global levels of acetylated histone H3 suggesting specificity of IR-induced changes. Furthermore, evaluation of epigenetic controlling enzymes revealed that IR did not alter overall cellular levels of HDACs (HDAC1, HDAC2 or HDAC3) or DNMTs (DNMT1, DNMT3a, or DNMT3b). Instead, radiation decreased binding of HDAC2 and HDAC3 at the promoter regions of Fas and 4-1BBL, respectively. Radiation also resulted in reduced DNMT1 at both the Fas and 4-1BBL promoter regions but not a control gene. We conclude that single dose radiation can influence the expression of immune response relevant genes in colorectal tumor cells by altering the binding of epigenetic enzymes, and modulating histone acetylation, at specific gene promoters.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Metilação de DNA/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Histonas/efeitos da radiação , Acetilação/efeitos da radiação , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/efeitos da radiação , Citometria de Fluxo , Histona Desacetilases/metabolismo , Histona Desacetilases/efeitos da radiação , Humanos , Radiação Ionizante , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Immunol ; 67(2 Pt B): 482-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283540

RESUMO

The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.


Assuntos
Proteínas Nucleares/genética , Proteínas do Grupo Polycomb/metabolismo , Transativadores/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/metabolismo , Humanos , Interferon gama/farmacologia , Lisina/metabolismo , Metilação/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
Biosci Rep ; 35(4)2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26181363

RESUMO

The class II transactivator (CIITA) is known as the master regulator for the major histocompatibility class II (MHC II) molecules. CIITA is dynamically regulated through a series of intricate post-translational modifications (PTMs). CIITA's role is to initiate transcription of MHC II genes, which are responsible for presenting extracellular antigen to CD4(+) T-cells. In the present study, we identified extracellular signal-regulated kinase (ERK)1/2 as the kinase responsible for phosphorylating the regulatory site, Ser(280), which leads to increased levels of mono-ubiquitination and an overall increase in MHC II activity. Further, we identify that CIITA is also modified by Lys(63)-linked ubiquitination. Lys(63) ubiquitinated CIITA is concentrated in the cytoplasm and following activation of ERK1/2, CIITA phosphorylation occurs and Lys=ubiquitinated CIITA translocates to the nucleus. CIITA ubiquitination and phosphorylation perfectly demonstrates how CIITA location and activity is regulated through PTM cross-talk. Identifying CIITA PTMs and understanding how they mediate CIITA regulation is necessary due to the critical role CIITA has in the initiation of the adaptive immune response.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Ubiquitinação/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Chlorocebus aethiops , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/genética , Fosforilação/fisiologia , Linfócitos T/metabolismo , Transativadores/genética
18.
PLoS One ; 9(1): e87455, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475290

RESUMO

RGS10 is an important regulator of cell survival and chemoresistance in ovarian cancer. We recently showed that RGS10 transcript expression is suppressed during acquired chemoresistance in ovarian cancer. The suppression of RGS10 is due to DNA hypermethylation and histone deacetylation, two important mechanisms that contribute to silencing of tumor suppressor genes during cancer progression. Here, we fully investigate the molecular mechanisms of epigenetic silencing of RGS10 expression in chemoresistant A2780-AD ovarian cancer cells. We identify two important epigenetic regulators, HDAC1 and DNMT1, that exhibit aberrant association with RGS10 promoters in chemoresistant ovarian cancer cells. Knockdown of HDAC1 or DNMT1 expression, and pharmacological inhibition of DNMT or HDAC enzymatic activity, significantly increases RGS10 expression and cisplatin-mediated cell death. Finally, DNMT1 knock down also decreases HDAC1 binding to the RGS10 promoter in chemoresistant cells, suggesting HDAC1 recruitment to RGS10 promoters requires DNMT1 activity. Our results suggest that HDAC1 and DNMT1 contribute to the suppression of RGS10 during acquired chemoresistance and support inhibition of HDAC1 and DNMT1 as an adjuvant therapeutic approach to overcome ovarian cancer chemoresistance.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Neoplasias Ovarianas/metabolismo , Proteínas RGS/metabolismo , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1 , Primers do DNA/genética , Feminino , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 9(3): e91200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625964

RESUMO

Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes.


Assuntos
Adenosina Trifosfatases/química , Proteínas Nucleares/química , Transativadores/química , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Anticorpos/química , Regulação da Expressão Gênica , Células HeLa , Histonas/química , Humanos , Proteínas com Domínio LIM/química , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Interferente Pequeno/química , Fatores de Transcrição/química
20.
J Immunother Cancer ; 1: 17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24829753

RESUMO

BACKGROUND: Sub-lethal doses of radiation can alter the phenotype of target tissue by modulating gene expression and making tumor cells more susceptible to T-cell-mediated immune attack. We have previously shown that sub-lethal tumor cell irradiation enhances killing of colorectal carcinoma cells by tumor-specific cytotoxic T cells by unknown mechanisms. Recent data from our lab indicates that irradiation of tumor cells results in the upregulation of OX40L and 41BBL, and that T cells incubated with irradiated tumor cells displayed improved CTL survival, activation and effector activity. The objective of this current study was to determine the mechanism of enhanced OX40L and 41BBL expression in human colorectal tumor cells. METHODS: Two colorectal carcinoma cell lines, HCT116 and SW620, were examined for changes in the expression of 41BBL and OX40L in response to inhibition of histone deacetylases (using TSA) and DNA methyltransferases (using 5-Aza-2'-deoxycytidine) to evaluate if epigenetic mechanisms of gene expression can modulate these genes. Tumor cells were treated with radiation, TSA, or 5-Aza-dC, and subsequently evaluated for changes in gene expression using RT-qPCR and flow cytometry. Moreover, we assessed levels of histone acetylation at the 41BBL promoter using chromatin immunoprecipitation assays in irradiated HCT116 cells. RESULTS: Our data indicate that expression of 41BBL and OX40L can indeed be epigenetically regulated, as inhibition of histone deacetylases and of DNA methyltransferases results in increased OX40L and 41BBL mRNA and protein expression. Treatment of tumor cells with TSA enhanced the expression of these genes more than treatment with 5-Aza-dC, and co-incubation of T cells with TSA-treated tumor cells enhanced T-cell survival and activation, similar to radiation. Furthermore, chromatin immunoprecipitation experiments revealed significantly increased histone H3 acetylation of 41BBL promoters specifically following irradiation. CONCLUSIONS: Full understanding of specific mechanisms of immunogenic modulation (altered expression of immune relevant genes) of irradiated tumor cells will be required to determine how to best utilize radiation as a tool to enhance cancer immunotherapy approaches. Overall, our results suggest that radiation can be used to make human tumors more immunogenic through epigenetic modulation of genes stimulatory to effector T-cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa