Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 137(6): 1018-31, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524506

RESUMO

Retinoblastomas result from the inactivation of the RB1 gene and the loss of Rb protein, yet the cell type in which Rb suppresses retinoblastoma and the circuitry that underlies the need for Rb are undefined. Here, we show that retinoblastoma cells express markers of postmitotic cone precursors but not markers of other retinal cell types. We also demonstrate that human cone precursors prominently express MDM2 and N-Myc, that retinoblastoma cells require both of these proteins for proliferation and survival, and that MDM2 is needed to suppress ARF-induced apoptosis in cultured retinoblastoma cells. Interestingly, retinoblastoma cell MDM2 expression was regulated by the cone-specific RXRgamma transcription factor and a human-specific RXRgamma consensus binding site, and proliferation required RXRgamma, as well as the cone-specific thyroid hormone receptor-beta2. These findings provide support for a cone precursor origin of retinoblastoma and suggest that human cone-specific signaling circuitry sensitizes to the oncogenic effects of RB1 mutations.


Assuntos
Proliferação de Células , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Humanos , Camundongos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Receptor X Retinoide gama/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Transplante Heterólogo
2.
Mol Vis ; 29: 329-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264610

RESUMO

Purpose: Autosomal recessive cone and cone-rod dystrophies (CD/CRD) are inherited forms of vison loss. Here, we report on and correlate the clinical phenotypes with the underlying genetic mutations. Methods: Clinical information was collected from subjects, including a family history with a chart review. They underwent a full ophthalmic examination, including best-corrected visual acuity, direct and indirect ophthalmoscopy, color vision testing, color fundus photography, contrast sensitivity, autofluorescence, and spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography. Next-generation panel-based genetic testing was used to identify DNA variants in subject buccal swab samples. Results: Genetic testing in two patients revealed three novel variants in the TTLL5 gene associated with CD/CRD: two missense variants (c.1433G>A;p.(Arg478Gln), c.241C>G;p.(Leu81Val), and one loss-of-function variant (c.2384_2387del;p.(Ala795Valfs*9). Based on in-silico analysis, structural modeling, and comparison to previously reported mutations, these novel variants are very likely to be disease-causing mutations. Combining retinal imaging with SD-OCT analysis, we observed an unusual sheen in the CD/CRD phenotypes. Conclusion: Based on the protein domain location of novel TTLL5 variants and the localization of TTLL5 to the connecting cilium, we conclude that the CD/CRD disease phenotype is characterized as a ciliopathy caused by protein tracking dysfunction. This initially affects cone photoreceptors, where photoreceptor cilia express a high level of TTLL5, but extends to rod photoreceptors over time. Fundus photography correlated with SD-OCT imaging suggests that the macular sheen characteristically seen with TTLL5 mutations derives from the photoreceptor's outer segments at the posterior pole.


Assuntos
Distrofia de Cones , Distrofias de Cones e Bastonetes , Distrofias Retinianas , Humanos , Células Fotorreceptoras Retinianas Cones , Tomografia de Coerência Óptica , Tubulina (Proteína) , Fenótipo , Tirosina , Proteínas de Transporte
3.
J Med Genet ; 59(1): 46-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257509

RESUMO

Strabismus is a common condition, affecting 1%-4% of individuals. Isolated strabismus has been studied in families with Mendelian inheritance patterns. Despite the identification of multiple loci via linkage analyses, no specific genes have been identified from these studies. The current study is based on a seven-generation family with isolated strabismus inherited in an autosomal dominant manner. A total of 13 individuals from a common ancestor have been included for linkage analysis. Among these, nine are affected and four are unaffected. A single linkage signal has been identified at an 8.5 Mb region of chromosome 14q12 with a multipoint LOD (logarithm of the odds) score of 4.69. Disruption of this locus is known to cause FOXG1 syndrome (or congenital Rett syndrome; OMIM #613454 and *164874), in which 84% of affected individuals present with strabismus. With the incorporation of next-generation sequencing and in-depth bioinformatic analyses, a 4 bp non-coding deletion was prioritised as the top candidate for the observed strabismus phenotype. The deletion is predicted to disrupt regulation of FOXG1, which encodes a transcription factor of the Forkhead family. Suggestive of an autoregulation effect, the disrupted sequence matches the consensus FOXG1 and Forkhead family transcription factor binding site and has been observed in previous ChIP-seq studies to be bound by Foxg1 in early mouse brain development. Future study of this specific deletion may shed light on the regulation of FOXG1 expression and may enhance our understanding of the mechanisms contributing to strabismus and FOXG1 syndrome.


Assuntos
Fatores de Transcrição Forkhead/genética , Proteínas do Tecido Nervoso/genética , Síndrome de Rett/genética , Deleção de Sequência , Estrabismo/genética , Adolescente , Idoso , Idoso de 80 Anos ou mais , Animais , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388224

RESUMO

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Assuntos
Anormalidades Congênitas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Nefropatias/congênito , Rim/anormalidades , Cinesinas/genética , Mutação com Perda de Função , Microcefalia/genética , Proteínas Oncogênicas/genética , Animais , Anormalidades Congênitas/metabolismo , Citocinese/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Genes Letais , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Linhagem , Fenótipo , Relação Estrutura-Atividade , Peixe-Zebra
5.
Hum Genet ; 138(8-9): 865-880, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31073883

RESUMO

Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.


Assuntos
Coloboma/genética , Olho/fisiopatologia , Animais , Genética , Humanos , Morfogênese/genética
6.
Hum Genet ; 138(8-9): 1019-1026, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30603775

RESUMO

Over the last three decades, genetic studies have made great strides toward the identification of genes and genetic mechanisms underlying congenital disorders of the eye. However, despite the vast knowledge available this has not translated into treatments to prevent or repair the damage in the clinical setting. Recently, new research in technologies, such as tissue regeneration, next generation designer drugs, and genome editing, have become available for some genetic disorders that might be applicable to congenital ocular diseases in the near future. Here, we provide an overview of the emerging therapeutic modalities and the future prospects they hold for debilitating ocular defects.


Assuntos
Oftalmopatias/genética , Olho/fisiopatologia , Doenças Genéticas Inatas/genética , Animais , Edição de Genes/métodos , Humanos , Regeneração/genética
7.
Hum Mol Genet ; 25(8): 1501-16, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008885

RESUMO

The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1ß and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Rodopsina/genética , Animais , Efeito Espectador/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Ratos , Ratos Transgênicos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Exp Eye Res ; 173: 138-147, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29775563

RESUMO

The fovea is an anatomical specialization of the central retina containing closely packed cone-photoreceptors providing an area of high acuity vision in humans and primates. Despite its key role in the clarity of vision, little is known about the molecular and cellular basis of foveal development, due to the absence of a foveal structure in commonly used laboratory animal models. Of the amniotes the retina in birds of prey and some reptiles do exhibit a typical foveal structure, but they have not been studied in the context of foveal development due to lack of availability of embryonic tissue, lack of captive breeding programs, and limited genomic information. However, the genome for the diurnal bifoveate reptile species Anolis carolinensis (green anole) was recently published and it is possible to collect embryos from this species in captivity. Here, we tested the feasibility of using the anole as a model to study foveal development. Eyes were collected at various stages of development for histological analysis, immunofluorescence, and apoptosis. We show that at embryonic stage (ES) 10 there is peak ganglion cell density at the incipient central foveal region and a single row of cone photoreceptor nuclei. At ES17 the foveal pit begins to form and at this stage there are 3-4 rows of cone nuclei. Post-hatching a further increase in cone density and lengthening of inner and outer segments is observed. A yellowish pigment was seen in the adult central foveal region, but not in the temporal fovea. At ES14 Pax6 was localized across the entire retina, but was more prominent in the ganglion cell layer (GCL) and the part of the inner nuclear layer (INL) containing amacrine cell bodies. However, at ES17 Pax6 expression in the ganglion cells of the central retina was markedly reduced. Bioinformatic analysis revealed that 86% of human candidate foveal hypoplasia genes had an orthologous gene or DNA sequence in the green anole. These findings provide the first insight into foveal morphogenesis in the green anole and suggest that it could be a very useful model for investigating the molecular signals driving foveal development, and thus inform on human foveal development and disease.


Assuntos
Fóvea Central/embriologia , Fóvea Central/crescimento & desenvolvimento , Lagartos , Modelos Animais , Morfogênese/fisiologia , Animais , Contagem de Células , Opsinas dos Cones/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Microscopia Confocal , Fator de Transcrição PAX6/metabolismo , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 347-353, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27902929

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons. Cell death in ALS and in general was previously believed to exist as a dichotomy between apoptosis and necrosis. Most research investigating cell death mechanisms in ALS was conducted before the discovery of programmed necrosis thus did not use selective cell death pathway-specific markers. Recently, a new form of programmed cell death, termed "necroptosis", has been characterized and has been recently implicated in ALS as a primary mechanism driving motor neuron cell death in different forms of ALS. The present review is aimed at summarizing cell death pathways that are currently implicated in ALS and highlighting the emerging evidence on necroptosis as a major driver of motor neuron cell death.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Necrose/patologia , Neurônios/patologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Morte Celular , Humanos , Necrose/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Transdução de Sinais
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 60-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27771509

RESUMO

The Pax6 transcription factor is essential for development of the brain, eye, olfactory and endocrine systems. Haploinsufficiency of PAX6 in humans and mice causes the congenital condition aniridia, with defects in each of these organs and systems. Identification of the PAX6 transcription networks driving normal development is therefore critical in understanding the pathophysiology observed with loss-of-function defects. Here we have focused on identification of the downstream targets for Pax6 in the developing iris and ciliary body, where we used laser capture microdissection in mouse eyes from E12.5-E16.5, followed by chromatin immunoprecipitation, promoter-reporter assays and immunohistochemistry. We identified 6 differentially expressed genes between wildtype and Pax6 heterozygous mouse tissues and demonstrated that Bmp4, Tgfß2, and Foxc1 were direct downstream targets of Pax6 in developing iris/ciliary body. These results improve our understanding of how mutations in Bmp4, Tgfß2, and Foxc1 result in phenocopies of the aniridic eye disease and provide possible targets for therapeutic intervention.


Assuntos
Aniridia/genética , Corpo Ciliar/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Iris/crescimento & desenvolvimento , Fator de Transcrição PAX6/genética , Animais , Aniridia/metabolismo , Aniridia/patologia , Corpo Ciliar/metabolismo , Corpo Ciliar/patologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Iris/metabolismo , Iris/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fator de Transcrição PAX6/metabolismo , Regiões Promotoras Genéticas
11.
Mol Vis ; 22: 718-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27390514

RESUMO

PURPOSE: X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS: MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS: Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS: These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Retinosquise/terapia , Animais , Citomegalovirus/genética , Modelos Animais de Doenças , Eletroporação , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiologia , Retinosquise/genética , Retinosquise/fisiopatologia , Transfecção
12.
Cell Mol Life Sci ; 72(10): 1931-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25651836

RESUMO

Premature termination codons (PTCs) are caused by nonsense mutations and this leads to either degradation of the mutant mRNA template by nonsense-mediated decay (NMD) or the production of a non-functional, truncated polypeptide. PTCs contribute significantly to inherited human diseases including ocular disorders. Nonsense suppression therapy allows readthrough of PTCs, thereby rescuing the production of a full-length functional protein. In this review, we highlight the mechanisms that are involved in discriminating normal translation termination from premature termination codons; the current understanding of nonsense-mediated mRNA decay models (NMD); the association and crosstalk between PTC and the underlying dynamic NMD process; and the suppression therapies that have been employed in nonsense-medicated ocular disease models. Defining the mechanistic complexity of PTC and NMD will be important to improve treatments of the numerous genetic disorders caused by PTC mutations.


Assuntos
Códon sem Sentido/genética , Oftalmopatias Hereditárias/tratamento farmacológico , Oftalmopatias Hereditárias/genética , Modelos Genéticos , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Humanos , Luciferases , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Oxidiazóis/metabolismo
13.
Hum Mol Genet ; 21(10): 2357-69, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357656

RESUMO

Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.


Assuntos
Olho/crescimento & desenvolvimento , Proteína de Domínio de Morte Associada a Fas/metabolismo , Fator de Transcrição PAX2/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Imunoprecipitação da Cromatina , Embrião não Mamífero/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Fator de Transcrição PAX2/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
14.
Ophthalmic Genet ; : 1-5, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853699

RESUMO

INTRODUCTION: In addition to sensorineural hearing loss, Waardenburg Syndrome (WS) may present with variable pigmentation of skin and choroid, which may simulate other life-threating conditions (e.g. melanoma). CASE REPORT: Two siblings ostensibly presented with unilateral choroidal pigmentary abnormalities concerning for choroidal tumour. Serial ophthalmic examination documented no lesion growth (base or height) whilst the apparent syndromic features (i.e. iris hypochromia, profound sensorineural hearing loss, SNHL), family history (autosomal dominant inheritance) and positive genetic testing (pathogenic MITF variant) led to a revised diagnosis of Waardenburg Syndrome type 2A. CONCLUSION: Sectoral preservation of choroidal pigmentation in WS is rarely associated with choroidal malignancy. Awareness of syndromic features (e.g. SNHL) and access to genetic testing may facilitate early accurate diagnosis (i.e. allay concern for malignancy), enable treatment of modifiable features (e.g. SNHL) and identify other affected relatives.

15.
IEEE Trans Magn ; 49(1): 389-393, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24976643

RESUMO

Mesenchymal stem cells (MSCs) have well-established paracrine effects that are proving to be therapeutically useful. This potential is based on the ability of MSCs to secrete a range of neuroprotective and anti-inflammatory molecules. Previous work in our laboratory has demonstrated that intravenous injection of MSCs, treated with superparamagnetic iron oxide nanoparticle fluidMAG-D resulted in enhanced levels of glial-derived neurotrophic factor, ciliary neurotrophic factor, hepatocyte growth factor and interleukin-10 in the dystrophic rat retina. In this present study we investigated whether the concentration of fluidMAG-D in cell culture media affects the secretion of these four molecules in vitro. In addition, we assessed the effect of fluidMAG-D concentration on retinoschisin secretion from genetically modified MSCs. ELISA-assayed secretion of these molecules was measured using escalating concentrations of fluidMAG-D which resulted in MSC iron loads of 0, 7, 120, or 274 pg iron oxide per cell respectively. Our results demonstrated glial-derived neurotrophic factor and hepatocyte growth factor secretion was significantly decreased but only at the 96 hour's time-point whereas no statistically significant effect was seen with ciliary neurotrophic factor secretion. Whereas no effect was observed on culture media concentrations of retinoschisin with increasing iron oxide load, a statistically significant increase in cell lysate retinoschisin concentration (p = 0.01) was observed suggesting that increasing fluidMAG-D concentration did increase retinoschisin production but this did not lead to greater secretion. We hypothesize that higher concentrations of iron-oxide nanoparticle fluidMAG-D have an effect on the innate ability of MSCs to secrete therapeutically useful molecules and also on secretion from genetically modified cells. Further work is required to verify these in vitro finding using in vivo model systems.

16.
Can J Ophthalmol ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37678418

RESUMO

OBJECTIVE: To evaluate the success of diagnostic genetic testing in inherited retinal dystrophy (IRD) patients in the clinical setting. DESIGN: Retrospective cohort analysis. PARTICIPANTS: A total of 446 consecutive participants from diverse ethnic backgrounds living in western Canada. METHODS: Clinical information was collected from participants, including family history, and they underwent a full ophthalmic examination with chart review. Those with a suspected IRD were offered panel-based genetic testing of 351 genes between March 1, 2019, and February 28, 2022. The main outcome measure was effect of the genetic testing results on clinical diagnosis. RESULTS: Genetic testing established a conclusive molecular diagnosis in 249 of 446 cases (55.8%), a clearly negative result in 90 of 446 cases (20.1%), and an inconclusive diagnosis in 108 of 446 cases (24.2%). Conclusive disease-causing variants were identified in 69 genes, and the most commonly affected genes were ABCA4 (31 variants), USH2A (25 variants), and RPGR (19 variants). The inconclusive group included likely novel autosomal dominant variants or a pathogenic variant with a variant of uncertain significance in the same gene for a recessive phenotype. Notably, an inconclusive molecular genetic diagnosis was seen in as many as 47.3% of East Asian participants with an outer retinal dystrophy. CONCLUSIONS: This study represents the largest review of molecular genetic testing in IRDs in Canada. That negative or inconclusive results obtained in approximately 45% of cases demonstrates that there is an important need for new research into molecular genetic causes of IRDs. This is particularly true in addressing the problem of interpreting a variant of uncertain significance in ethnic minorities.

17.
Future Med Chem ; 15(8): 651-659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37170865

RESUMO

Aim: To discover derivatives of the anthelmintic drug levamisole, which has been reported to possess immune-modulatory properties, as treatments for amyotrophic lateral sclerosis (ALS), which has been suggested to be in part an autoimmune disease. Results: We have synthesized ten analogs of the racemic version of levamisole, tetramisole, as well as eleven analogs on a related system. All of the analogs have been tested for their ability to affect the response of five ALS-relevant cytokines. Conclusion: We have discovered a number of interesting derivatives that have encouraging cytokine response data and good metabolic stability, with the potential to have a positive impact on ALS either as single agents, or in combination.


Aim: To discover derivatives of the antiparasitic worm drug levamisole, which has been reported to be able to modulate the immune response, as treatments for amyotrophic lateral sclerosis (ALS), which has been suggested to be in part an autoimmune disease. Results: We have synthesized ten analogs of a variation of levamisole, tetramisole, as well as 11 analogs on a related system. All of the analogs have been tested for their ability to affect the response of five ALS-relevant immune-modulatory substances (cytokines). Conclusion: We have discovered a number of interesting derivatives that have encouraging cytokine response data and good metabolic stability, with the potential to have a positive impact on ALS either as single agents, or in combination.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Levamisol/farmacologia , Levamisol/uso terapêutico , Citocinas/metabolismo , Tetramizol/uso terapêutico
18.
Ophthalmic Res ; 47(1): 32-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21691141

RESUMO

AIMS: We have previously shown the benefits of cell-based delivery of neuroprotection in a rodent model of retinitis pigmentosa (RP). In order to maximise the effectiveness of this approach, we hypothesised that this could be augmented by combination with an aminoglycoside known to limit the abnormal RNA translation seen in this model. METHODS: A rhodopsin TgN S334ter-4 rat model of RP underwent daily subcutaneous injection of 12.5 µg/g gentamicin from postnatal day 5 (P5). At P21, selected rats also underwent intravitreal injection of cells genetically engineered to oversecrete glial cell-derived neurotrophic factor. Histological imaging was undertaken to evaluate photoreceptor survival at P70 and compared with images from untreated TgN S334ter-4 rats and control Sprague-Dawley rats. RESULTS: Statistically significant (p < 0.05) improvements in outer retinal indices were seen with this combination strategy when compared with results in rats treated with individual therapies alone. This improvement was most apparent in the peripheral retina, where the greatest degeneration was observed. CONCLUSIONS: We have shown that the combination of neuroprotection plus aminoglycoside read-through in an animal model of retinal degeneration improved the histological appearance of the retina such that it was statistically indistinguishable from unaffected controls. Further functional and longitudinal studies of this approach are warranted.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Gentamicinas/uso terapêutico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Inibidores da Síntese de Proteínas/uso terapêutico , Retinose Pigmentar/terapia , Animais , Contagem de Células , Sobrevivência Celular , Terapia Combinada , Células-Tronco Embrionárias/metabolismo , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Gentamicinas/farmacocinética , Injeções Subcutâneas , Inibidores da Síntese de Proteínas/farmacocinética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Retinose Pigmentar/genética , Transfecção
19.
Mol Vis ; 17: 1473-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21677791

RESUMO

PURPOSE: We recently demonstrated that molecular therapy using aminoglycosides can overcome the underlying genetic defect in two zebrafish models of ocular coloboma and showed abnormal cell death to be a key feature associated with the optic fissure closure defects. In further studies to identify molecular therapies for this common congenital malformation, we now examine the effects of anti-apoptotic compounds in zebrafish models of ocular coloboma in vivo. METHODS: Two ocular coloboma zebrafish lines (pax2.1/noi(tu29a) and lamb1/gup(m189)) were exposed to diferuloylmethane (curcumin) or benzyloxycarbonyl-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD-fmk; a pan-caspase inhibitor) for up to 8 days post-fertilization. The effects of these compounds were assessed by morphology, histology, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. RESULTS: The size of the coloboma in gup zebrafish mutants treated with diferuloylmethane was greatly reduced. In treated mutants a reduction in TUNEL staining and a 67% decrease in activated caspase-3 protein were observed. The release of cytochrome c from the mitochondria into the cytosol was reduced fourfold by in vivo diferuloylmethane treatment, suggesting that the drug was acting to inhibit the intrinsic apoptotic pathway. Inhibition of caspases directly with zVAD-fmk also resulted in a similar reduction in coloboma phenotype. Treatment with either diferuloylmethane or zVAD-fmk resulted in a statistically significant 1.4 fold increase in length of survival of these mutant zebrafish (p<0.001), which normally succumb to the lethal genetic mutation. In contrast, the coloboma phenotype in noi zebrafish mutants did not respond to either diferuloylmethane or zVAD-fmk exposure, even though inhibition of apoptotic cell death was observed by a reduction in TUNEL staining. CONCLUSIONS: The differential sensitivity to anti-apoptotic agents in lamb1-deficient and pax2.1-deficient zebrafish models, suggests that apoptotic cell death is not a final common pathway in all ocular coloboma genotypes. When considering anti-cell death therapies for ocular colobomatous defects attention should be paid to the genotype under investigation.


Assuntos
Morte Celular/genética , Coloboma , Curcumina/farmacologia , Olho/metabolismo , Peixe-Zebra/genética , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Western Blotting , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Coloboma/embriologia , Coloboma/genética , Coloboma/metabolismo , Coloboma/patologia , Citocromos c/análise , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Embrião não Mamífero , Olho/embriologia , Olho/patologia , Variação Genética , Marcação In Situ das Extremidades Cortadas , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Tissue Eng Regen Med ; 15(6): 556-566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779072

RESUMO

Cell replacement therapy is emerging as an important approach in novel treatments for neurodegenerative diseases. Many problems remain, in particular improvements are needed in the survival of transplanted cells and increasing functional integration into host tissue. These problems arise because of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, and toxic compounds released by dying tissues and nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) and showed 2.8-fold improvement in transplant cell survival after pretreatment with a novel glycopeptide (PKX-001). In this study, we extended these studies to look at cell survival, maturation, and functional integration in an in vivo rat model of rhodopsin-mutant retinitis pigmentosa causing blindness. We found that only when human photoreceptor precursor cells were preincubated with PKX-001 prior to transplantation, did the cells integrate and mature into cone photoreceptors expressing S-opsin or L/M opsin. In addition, ribbon synapses were observed in the transplanted cells suggesting they were making synaptic connections with the host tissue. Furthermore, optokinetic tracking and electroretinography responses in vivo were significantly improved compared to cell transplants without PKX-001 pre-treatment. These data demonstrate that PKX-001 promotes significant long-term stem cell survival in vivo, providing a platform for further investigation towards the clinical application to repair damaged or diseased retina.


Assuntos
Glicopeptídeos/farmacologia , Células Fotorreceptoras de Vertebrados/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Eletrorretinografia , Feminino , Humanos , Masculino , Células Fotorreceptoras de Vertebrados/transplante , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa