Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 76: 727-755, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759872

RESUMO

Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase complex (Mcr). Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.


Assuntos
Archaea , Metano , Metano/metabolismo , Oxirredução , Filogenia
2.
PLoS Biol ; 21(11): e3002374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939146

RESUMO

Establishing the origin of mitochondria and plastids is key to understand 2 founding events in the origin and early evolution of eukaryotes. Recent advances in the exploration of microbial diversity and in phylogenomics approaches have indicated a deep origin of mitochondria and plastids during the diversification of Alphaproteobacteria and Cyanobacteria, respectively. Here, we strongly support these placements by analyzing the machineries for assembly of iron-sulfur ([Fe-S]) clusters, an essential function in eukaryotic cells that is carried out in mitochondria by the ISC machinery and in plastids by the SUF machinery. We assessed the taxonomic distribution of ISC and SUF in representatives of major eukaryotic supergroups and analyzed the phylogenetic relationships with their prokaryotic homologues. Concatenation datasets of core ISC proteins show an early branching of mitochondria within Alphaproteobacteria, right after the emergence of Magnetococcales. Similar analyses with the SUF machinery place primary plastids as sister to Gloeomargarita within Cyanobacteria. Our results add to the growing evidence of an early emergence of primary organelles and show that the analysis of essential machineries of endosymbiotic origin provide a robust signal to resolve ancient and fundamental steps in eukaryotic evolution.


Assuntos
Proteínas Ferro-Enxofre , Filogenia , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(52): 33384-33395, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288720

RESUMO

Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea. Their role in genome regulation, however, and the capacity of individual paralogs to assemble into histone-DNA complexes with distinct properties remain poorly understood. Here, we combine structural modeling with phylogenetic analysis to shed light on archaeal histone paralogs, their evolutionary history, and capacity to generate combinatorial chromatin states through hetero-oligomeric assembly. Focusing on the human commensal Methanosphaera stadtmanae as a model archaeal system, we show that the heteromeric complexes that can be assembled from its seven histone paralogs vary substantially in DNA binding affinity and tetramer stability. Using molecular dynamics simulations, we go on to identify unique paralogs in M. stadtmanae and Methanobrevibacter smithii that are characterized by unstable interfaces between dimers. We propose that these paralogs act as capstones that prevent stable tetramer formation and extension into longer oligomers characteristic of model archaeal histones. Importantly, we provide evidence from phylogeny and genome architecture that these capstones, as well as other paralogs in the Methanobacteriales, have been maintained for hundreds of millions of years following ancient duplication events. Taken together, our findings indicate that at least some archaeal histone paralogs have evolved to play distinct and conserved functional roles, reminiscent of eukaryotic histone variants. We conclude that combinatorially complex histone-based chromatin is not restricted to eukaryotes and likely predates their emergence.


Assuntos
Archaea/genética , Cromatina/metabolismo , Evolução Molecular , Variação Genética , Histonas/genética , Aminoácidos/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Simulação de Dinâmica Molecular , Mutação/genética , Filogenia , Ligação Proteica
4.
PLoS Genet ; 16(12): e1009246, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315869

RESUMO

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


Assuntos
Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Mutação , Domínios Proteicos , Esporos Bacterianos/ultraestrutura
5.
Mol Biol Evol ; 38(6): 2396-2412, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533884

RESUMO

The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


Assuntos
Evolução Biológica , Divisão Celular/genética , Firmicutes/genética , Família Multigênica , Simulação por Computador , Sintenia
6.
Environ Microbiol ; 24(12): 6320-6335, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36530021

RESUMO

Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.


Assuntos
Bacillus , Firmicutes , Esporos Bacterianos/genética , Filogenia
7.
J Eukaryot Microbiol ; 69(4): e12908, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322502

RESUMO

The alternative oxidase (AOX) is a protein involved in supporting enzymatic reactions of the Krebs cycle in instances when the canonical (cytochrome-mediated) respiratory chain has been inhibited, while allowing for the maintenance of cell growth and necessary metabolic processes for survival. Among eukaryotes, alternative oxidases have dispersed distribution and are found in plants, fungi, and protists, including Naegleria ssp. Naegleria species are free-living unicellular amoeboflagellates and include the pathogenic species of N. fowleri, the so-called "brain-eating amoeba." Using a multidisciplinary approach, we aimed to understand the evolution, localization, and function of AOX and the role that plays in Naegleria's biology. Our analyses suggest that AOX was present in last common ancestor of the genus and structure prediction showed that all functional residues are also present in Naegleria species. Using cellular and biochemical techniques, we also functionally characterize N. gruberi's AOX in its mitochondria, and we demonstrate that its inactivation affects its proliferation. Consequently, we discuss the benefits of the presence of this protein in Naegleria species, along with its potential pathogenicity role in N. fowleri. We predict that our findings will spearhead new explorations to understand the cell biology, metabolism, and evolution of Naegleria and other free-living relatives.


Assuntos
Naegleria fowleri , Naegleria , Eucariotos , Proteínas Mitocondriais , Oxirredutases/metabolismo , Proteínas de Plantas
8.
Mol Microbiol ; 113(3): 659-671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975449

RESUMO

How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.


Assuntos
Membrana Celular/genética , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/ultraestrutura , Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Evolução Molecular , Firmicutes/classificação , Firmicutes/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos , Filogenia
9.
Proc Natl Acad Sci U S A ; 115(6): E1166-E1173, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358391

RESUMO

Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a five-subunit enzyme complex responsible for the carbonyl branch of the Wood-Ljungdahl (WL) pathway, considered one of the most ancient metabolisms for anaerobic carbon fixation, but its origin and evolutionary history have been unclear. While traditionally associated with methanogens and acetogens, the presence of CODH/ACS homologs has been reported in a large number of uncultured anaerobic lineages. Here, we have carried out an exhaustive phylogenomic study of CODH/ACS in over 6,400 archaeal and bacterial genomes. The identification of complete and likely functional CODH/ACS complexes in these genomes significantly expands its distribution in microbial lineages. The CODH/ACS complex displays astounding conservation and vertical inheritance over geological times. Rare intradomain and interdomain transfer events might tie into important functional transitions, including the acquisition of CODH/ACS in some archaeal methanogens not known to fix carbon, the tinkering of the complex in a clade of model bacterial acetogens, or emergence of archaeal-bacterial hybrid complexes. Once these transfers were clearly identified, our results allowed us to infer the presence of a CODH/ACS complex with at least four subunits in the last universal common ancestor (LUCA). Different scenarios on the possible role of ancestral CODH/ACS are discussed. Despite common assumptions, all are equally compatible with an autotrophic, mixotrophic, or heterotrophic LUCA. Functional characterization of CODH/ACS from a larger spectrum of bacterial and archaeal lineages and detailed evolutionary analysis of the WL methyl branch will help resolve this issue.


Assuntos
Acetato-CoA Ligase/genética , Aldeído Oxirredutases/genética , Archaea/enzimologia , Bactérias/enzimologia , Evolução Biológica , Complexos Multienzimáticos/genética , Filogenia , Acetato-CoA Ligase/metabolismo , Aldeído Oxirredutases/metabolismo , Archaea/genética , Bactérias/genética , Ciclo do Carbono , Monóxido de Carbono/metabolismo , Genoma Arqueal , Genoma Bacteriano , Complexos Multienzimáticos/metabolismo
10.
BMC Biol ; 18(1): 69, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560683

RESUMO

BACKGROUND: A unifying feature of the bacterial Candidate Phyla Radiation (CPR) is a limited and highly variable repertoire of biosynthetic capabilities. However, the distribution of metabolic traits across the CPR and the evolutionary processes underlying them are incompletely resolved. RESULTS: Here, we selected ~ 1000 genomes of CPR bacteria from diverse environments to construct a robust internal phylogeny that was consistent across two unlinked marker sets. Mapping of glycolysis, the pentose phosphate pathway, and pyruvate metabolism onto the tree showed that some components of these pathways are sparsely distributed and that similarity between metabolic platforms is only partially predicted by phylogenetic relationships. To evaluate the extent to which gene loss and lateral gene transfer have shaped trait distribution, we analyzed the patchiness of gene presence in a phylogenetic context, examined the phylogenetic depth of clades with shared traits, and compared the reference tree topology with those of specific metabolic proteins. While the central glycolytic pathway in CPR is widely conserved and has likely been shaped primarily by vertical transmission, there is evidence for both gene loss and transfer especially in steps that convert glucose into fructose 1,6-bisphosphate and glycerate 3P into pyruvate. Additionally, the distribution of Group 3 and Group 4-related NiFe hydrogenases is patchy and suggests multiple events of ancient gene transfer. CONCLUSIONS: We infer that patterns of gene gain and loss in CPR, including acquisition of accessory traits in independent transfer events, could have been driven by shifts in host-derived resources and led to sparse but varied genetic inventories.


Assuntos
Bactérias/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Filogenia , Genes Bacterianos
11.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817093

RESUMO

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Sistemas de Secreção Tipo V , Veillonella/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
12.
J Cell Sci ; 129(20): 3695-3703, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27672020

RESUMO

Eukaryogenesis - the emergence of eukaryotic cells - represents a pivotal evolutionary event. With a fundamentally more complex cellular plan compared to prokaryotes, eukaryotes are major contributors to most aspects of life on Earth. For decades, we have understood that eukaryotic origins lie within both the Archaea domain and α-Proteobacteria. However, it is much less clear when, and from which precise ancestors, eukaryotes originated, or the order of emergence of distinctive eukaryotic cellular features. Many competing models for eukaryogenesis have been proposed, but until recently, the absence of discriminatory data meant that a consensus was elusive. Recent advances in paleogeology, phylogenetics, cell biology and microbial diversity, particularly the discovery of the 'Candidatus Lokiarcheaota' phylum, are now providing new insights into these aspects of eukaryogenesis. The new data have allowed the time frame during which eukaryogenesis occurred to be finessed, a more precise identification of the contributing lineages and the biological features of the contributors to be clarified. Considerable advances have now been used to pinpoint the prokaryotic origins of key eukaryotic cellular processes, such as intracellular compartmentalisation, with major implications for models of eukaryogenesis.


Assuntos
Células Eucarióticas/metabolismo , Fósseis , Filogenia , Archaea/metabolismo , Células Procarióticas , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 112(21): 6670-5, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964353

RESUMO

One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/"Aigarchaeota" (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth.


Assuntos
Archaea/classificação , Archaea/genética , Evolução Biológica , Bactérias/classificação , Bactérias/genética , Teorema de Bayes , Bases de Dados Genéticas , Eucariotos/classificação , Eucariotos/genética , Euryarchaeota/classificação , Euryarchaeota/genética , Evolução Molecular , Marcadores Genéticos , Especiação Genética , Genoma Arqueal , Genoma Bacteriano , Modelos Biológicos , Filogenia
14.
BMC Evol Biol ; 16(1): 252, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881071

RESUMO

BACKGROUND: Chitin, the second most abundant biopolymer on earth after cellulose, is found in probably all fungi, many animals (mainly invertebrates), several protists and a few algae, playing an essential role in the development of many of them. This polysaccharide is produced by type 2 glycosyltransferases, called chitin synthases (CHS). There are several contradictory classifications of CHS isoenzymes and, as regards their evolutionary history, their origin and diversity is still a matter of debate. RESULTS: A genome-wide analysis resulted in the detection of more than eight hundred putative chitin synthases in proteomes associated with about 130 genomes. Phylogenetic analyses were performed with special care to avoid any pitfalls associated with the peculiarities of these sequences (e.g. highly variable regions, truncated or recombined sequences, long-branch attraction). This allowed us to revise and unify the fungal CHS classification and to study the evolutionary history of the CHS multigenic family. This update has the advantage of being user-friendly due to the development of a dedicated website ( http://wwwabi.snv.jussieu.fr/public/CHSdb ), and it includes any correspondences with previously published classifications and mutants. Concerning the evolutionary history of CHS, this family has mainly evolved via duplications and losses. However, it is likely that several horizontal gene transfers (HGT) also occurred in eukaryotic microorganisms and, even more surprisingly, in bacteria. CONCLUSIONS: This comprehensive multi-species analysis contributes to the classification of fungal CHS, in particular by optimizing its robustness, consensuality and accessibility. It also highlights the importance of HGT in the evolutionary history of CHS and describes bacterial chs genes for the first time. Many of the bacteria that have acquired a chitin synthase are plant pathogens (e.g. Dickeya spp; Pectobacterium spp; Brenneria spp; Agrobacterium vitis and Pseudomonas cichorii). Whether they are able to produce a chitin exopolysaccharide or secrete chitooligosaccharides requires further investigation.


Assuntos
Bactérias/enzimologia , Quitina Sintase/classificação , Quitina Sintase/genética , Fungos/enzimologia , Transferência Genética Horizontal , Estudo de Associação Genômica Ampla , Animais , Bactérias/genética , Quitina Sintase/metabolismo , Eucariotos/enzimologia , Evolução Molecular , Fungos/genética , Genoma Bacteriano , Família Multigênica , Filogenia , Recombinação Genética/genética , Vírus/enzimologia
15.
Mol Biol Evol ; 32(1): 13-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371435

RESUMO

The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype-phenotype space in which proteins diversify.


Assuntos
Biologia Computacional/métodos , Proteínas/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Simulação por Computador , Evolução Molecular , Genótipo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Fenótipo , Filogenia
16.
Mol Microbiol ; 94(4): 803-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171083

RESUMO

TET aminopeptidases assemble as large homo-dodecameric complexes. The reason why prokaryotic genomes often encode a diverse set of TET peptidases homologues remains unclear. In the archaeon Pyrococcus horikoshii, PhTET1, PhTET2 and PhTET3 homo-oligomeric particles have been proposed to work in concert to breakdown intracellular polypeptides. When coexpressed in Escherichia coli, the PhTET2 and PhTET3 proteins were found to assemble efficiently as heteromeric complexes. Biophysical analysis demonstrated that these particles possess the same quaternary structure as the homomeric TET dodecamers. The same hetero-oligomeric complexes were immunodetected in P. horikoshii cell extracts analysed by sucrose gradient fractionation and ion exchange chromatography. The biochemical activity of a purified hetero-oligomeric TET particle, assessed on chromogenic substrates and on a complex mixture of peptides, reveals that it displays higher efficiency than an equivalent combination of homo-oligomeric TET particles. Interestingly, phylogenetic analysis shows that PhTET2 and PhTET3 are paralogous proteins that arose from gene duplication in the ancestor of Thermococcales. Together, these results establish that the PhTET2 and PhTET3 proteins are two subunits of the same enzymatic complex aimed at the destruction of polypeptidic chains of very different composition. This is the first report for such a mechanism intended to improve multi-enzymatic complex efficiency among exopeptidases.


Assuntos
Aminopeptidases/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/metabolismo , Aminopeptidases/genética , Fenômenos Biofísicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Cell Microbiol ; 16(12): 1784-805, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24946720

RESUMO

Although chitin is an essential component of the fungal cell wall (CW), its biosynthesis and role in virulence is poorly understood. In Aspergillus fumigatus, there are eight chitin synthase (CHS) genes belonging to two families CHSA-C, CHSG in family 1 and CHSF, CHSD, CSMA, CSMB in family 2). To understand the function of these CHS genes, their single and multiple deletions were performed using ß-rec/six system to be able to delete all genes within each family (up to a quadruple ΔchsA/C/B/G mutant in family 1 and a quadruple ΔcsmA/csmB/F/D mutant in family 2). Radial growth, conidiation, mycelial/conidial morphology, CW polysaccharide content, Chs-activity, susceptibility to antifungal molecules and pathogenicity in experimental animal aspergillosis were analysed for all the mutants. Among the family 1 CHS, ΔchsA, ΔchsB and ΔchsC mutants showed limited impact on chitin synthesis. In contrast, there was reduced conidiation, altered mycelial morphotype and reduced growth and Chs-activity in the ΔchsG and ΔchsA/C/B/G mutants. In spite of this altered phenotype, these two mutants were as virulent as the parental strain in the experimental aspergillosis models. Among family 2 CHS, phenotypic defects mainly resulted from the CSMA deletion. Despite significant morphological mycelial and conidial growth phenotypes in the quadruple ΔcsmA/csmB/F/D mutant, the chitin content was poorly affected by gene deletions in this family. However, the entire mycelial cell wall structure was disorganized in the family 2 mutants that may be related to the reduced pathogenicity of the quadruple ΔcsmA/csmB/F/D mutant strain compared to the parental strain, in vivo. Deletion of the genes encompassing the two families (ΔcsmA/csmB/F/G) showed that in spite of being originated from an ancient divergence of fungi, these two families work cooperatively to synthesize chitin in A. fumigatus and demonstrate the essentiality of chitin biosynthesis for vegetative growth, resistance to antifungal drugs, and virulence of this filamentous fungus.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Quitina Sintase/metabolismo , Genes Fúngicos , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/citologia , Aspergillus fumigatus/genética , Quitina Sintase/genética , Modelos Animais de Doenças , Marcação de Genes , Camundongos , Micélio/citologia , Micélio/crescimento & desenvolvimento , Deleção de Sequência , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Análise de Sobrevida
19.
Int J Syst Evol Microbiol ; 65(12): 4621-4626, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26394885

RESUMO

A spore-forming, rod-shaped Gram-strain-positive bacterium, strain 656.84T, was isolated from human faeces in 1984. It contained anteiso-C15 : 0 as the major cellular fatty acid, meso-diaminopimelic acid was found in the cell wall peptidoglycan, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and aminophospholipids as the major components, and the predominant menaquinone was MK-7. The DNA G+C content was 52.9 mol%. The results of comparative 16S rRNA gene sequence studies placed strain 656.84T within the genus Paenibacillus. Its closest phylogenetic relatives were Paenibacillus barengoltzii and Paenibacillus timonensis. Levels of DNA-DNA relatedness between strain 656.84T and Paenibacillus timonensis CIP 108005T and Paenibacillus barengoltzii CIP 109354T were 17.3 % and 36.8 %, respectively, indicating that strain 656.84T represents a distinct species. On the basis of phenotypic and genotypic results, strain 656.84T is considered to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus faecis sp. nov. is proposed; the type strain is 656.84T ( = DSM 23593T = CIP 101062T).


Assuntos
Fezes/microbiologia , Paenibacillus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , França , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
BMC Genomics ; 15: 679, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25124552

RESUMO

BACKGROUND: A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, "Candidatus Methanomethylophilus alvus", "Candidatus Methanomassiliicoccus intestinalis" and Methanomassiliicoccus luminyensis. RESULTS: Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, "Ca. M. alvus" and "Ca. M. intestinalis" do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS: This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmata.


Assuntos
Lisina/análogos & derivados , Thermoplasmales/genética , Proteínas Arqueais/genética , Vias Biossintéticas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Códon de Terminação , Metabolismo Energético , Genoma Arqueal , Lisina/genética , Dados de Sequência Molecular , Filogenia , RNA Arqueal/genética , RNA Ribossômico/genética , Origem de Replicação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa