Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nanotechnology ; 33(40)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732108

RESUMO

Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing. The resulting plasmonic metasurface is a candidate for reflective colorimetric sensing. We examine the potential of this metasurface for reflective strain sensing, where the periodicity of the meta-atoms could ultimately be modified by a potential flexion, and for localized surface plasmon resonance refractive index sensing. This study evaluates the potential of streamlined meta-atom design combined with low-cost metallization for inexpensive sensor readout based on human optical perception.

2.
Chemistry ; 25(16): 4036-4039, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30440094

RESUMO

An iron oxide decorated nickel iron alloy nanoparticle/porous graphene hybrid exhibits high electrocatalytic activity and excellent durability toward oxygen evolution reaction (OER). It displays a low overpotential of 274 mV at 10 mA cm-2 , and low Tafel slope of 37 mV dec-1 , showing a superior performance to the state-of-the-art RuO2 OER electrocatalyst.

3.
Nanotechnology ; 28(40): 405304, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28747583

RESUMO

Nanoscale engineering of noble metal particles has provided numerous material configurations to selectively confine and manipulate light across the electromagnetic spectrum. Transitioning these materials to a composite form while maintaining the desired resonance properties has proven challenging. In this work, the successful integration of plasmon-focusing gold nanostars (GNSs) into polymer nanocomposites (PNCs) is demonstrated. Tailored GNSs are produced with over a 90% yield and methods to control the branching structures are shown. A protective silica capping shell is employed on the nanomaterials to facilitate survivability in the high temperate/high shear processing parameters to create optically-tuned injection molded PNCs. The developed GNS PNCs possess dichroic scattering and absorption behavior, opening up potential applications in the fields of holographic imaging, optical filtering and photovoltaics.

4.
Nano Lett ; 16(3): 1657-62, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26882091

RESUMO

The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene.

5.
Nano Lett ; 14(2): 839-46, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24447201

RESUMO

Hexagonal-boron nitride (h-BN) or "white graphene" has many outstanding properties including high thermal conductivity, high mechanical strength, chemical inertness, and high electrical resistance, which open up a wide range of applications such as thermal interface material, protective coatings, and dielectric in nanoelectronics that easily exceed the current advertised benefits pertaining to the graphene-based applications. The development of h-BN films using chemical vapor deposition (CVD) has thus far led into nucleation of triangular or asymmetric diamond shapes on different metallic surfaces. Additionally, the average size of the triangular domains has remained relatively small (∼ 0.5 µm(2)) leading to a large number of grain boundaries and defects. While the morphology of Cu surfaces for CVD-grown graphene may have impacts on the nucleation density, domain sizes, thickness, and uniformity, the effects of the decreased roughness of Cu surface to develop h-BN films are unknown. Here, we report the growth and characterization of novel large area h-BN hexagons using highly electropolished Cu substrate under atmospheric pressure CVD conditions. We found that the nucleation density of h-BN is significantly reduced while domain sizes increase. In this study, the largest hexagonal-shape h-BN domain observed is 35 µm(2), which is an order of magnitude larger than a typical triangular domain. As the domains coalesce to form a continuous film, the larger grain size offers a more pristine and smoother film with lesser grain boundaries induced defects.

6.
Anal Chem ; 86(15): 7377-82, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24999001

RESUMO

Here we present the synthesis of the enzyme DNase 1 stabilized gold nanoclusters (DNase 1:AuNCs) with core size consisting of either 8 or 25 atoms. The DNase 1:Au8NCs exhibit blue fluorescence whereas the DNase 1:Au25NCs are red emitting. In addition to the intense fluorescence emission, the synthesized DNase 1:AuNC hybrid retains the native functionality of the protein, allowing simultaneous detection and digestion of DNA with a detection limit of 2 µg/mL. The DNase 1:AuNCs could be conveniently employed as efficient and fast sensors to augment the current time-consuming DNA contamination analysis techniques.


Assuntos
Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/metabolismo , Ouro/química , Nanoestruturas , Análise Espectral
7.
Anal Chem ; 85(17): 8158-65, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23875581

RESUMO

We report on a competitive electrochemical detection system that is free of wash steps and enables the real-time monitoring of adenosine triphosphate (ATP) in a quantitative manner over a five-log concentration range. The system utilizes a recognition surface based on ATP aptamer (ATPA) capture probes prebound to electroactive flavin adenine dinucleotide (FAD) molecules, and a signaling surface utilizing graphene (Gr) and gold nanoparticle (AuNP) modified carbon paste electrode (Gr-AuNP-CPE) that is optimized to enhance electron-transfer kinetics and signal sensitivity. Binding of ATP to ATPA at the recognition surface causes the release of an equivalent concentration of FAD that can be quantitatively monitored in real time at the signaling surface, thereby enabling a wide linear working range (1.14 × 10(-10) to 3.0 × 10(-5) M), a low detection limit (2.01 × 10(-11) M using graphene and AuNP modified glassy carbon), and fast target binding kinetics (steady-state signal within 12 min at detection limit). Unlike assays based on capture probe-immobilized electrodes, this double-surface competitive assay offers the ability to speed up target binding kinetics by increasing the capture probe concentration, with no limitations due to intermolecular Coulombic interactions and nonspecific binding. We utilize the real-time monitoring capability to compute kinetic parameters for target binding and to make quantitative distinctions on degree of base-pair mismatch through monitoring target binding kinetics over a wide concentration range. On the basis of the simplicity of the assay chemistry and the quantitative detection of ATP within fruit and serum media, as demonstrated by comparison of ATP levels against those determined using a standard high-performance liquid chromatography (HPLC)-UV absorbance method, we envision a versatile detection platform for applications requiring real-time monitoring over a wide target concentration range.


Assuntos
Trifosfato de Adenosina/química , Sistemas Computacionais , Técnicas Eletroquímicas/métodos , Grafite/química , Trifosfato de Adenosina/análise , Eletrodos , Humanos , Masculino
8.
Nanoscale ; 13(2): 1061-1068, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33393579

RESUMO

Elucidating the location of stabilized nanoclusters within their protein hosts is an existing challenge towards the optimized development of functional protein-nanoclusters. While nanoclusters of various metal compositions can be readily synthesized within a wide array of protein hosts and exhibit tailorable properties, the inability to identify the cluster stabilization region prevents controllable property manipulation of both metallic and protein components. Additionally, the ability to synthesize protein-nanoclusters in a consistent and high-throughput fashion is also highly desirable. In this effort, trypsin stabilized gold nanoclusters are synthesized through standard and microwave-enabled methodologies to determine the impact of processing parameters on the materials physical and functional properties. Density functional theory simulations are employed to localize high probability regions within the trypsin enzyme for Au25 cluster stabilization, which reveal that cluster location is likely within close proximity of the trypsin active region. Trypsin activity measurements support our findings from DFT, as trypsin enzymatic activity is eliminated following cluster growth and stabilization. Moreover, studies on the reactivity of Au NCs and synchrotron characterization measurements further reveal that clusters made by microwave-based techniques exhibit slight structural differences to those made via standard methodologies, indicating that microwave-based syntheses largely maintain the native structural attributes despite the faster synthetic conditions. Overall, this work illustrates the importance of understanding the connections between synthetic conditions, atomic-scale structure, and materials properties that can be potentially used to further tune the properties of metal cluster-protein materials for future applications.


Assuntos
Ouro , Micro-Ondas , Proteínas , Tripsina
9.
ACS Appl Mater Interfaces ; 8(33): 21221-7, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27328035

RESUMO

To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs.


Assuntos
Ouro/química , Fluorescência , Nanopartículas Metálicas , Espectrometria de Fluorescência
10.
ACS Sens ; 1(3): 207-216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28261665

RESUMO

Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

11.
Mol Biol Int ; 2012: 910707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737583

RESUMO

An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

12.
Biosens Bioelectron ; 25(6): 1493-7, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19954962

RESUMO

Nanoscale sensing arrays utilizing the unique properties of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots are being developed for toxin detection applications. This paper describes an innovative method to activate bacteriorhodopsin-based electrodes with the optical output of quantum dots, producing an enhanced electrical response from the protein. Results show that the photonic emission of CdSe/ZnS quantum dots is absorbed by the bacteriorhodopsin retinal and initiates the proton pumping sequence, resulting in an electrical output from a bacteriorhodopsin-based electrode. It is also shown that activated quantum dots in sub-10nm proximity to bacteriorhodopsin further amplify the photovoltaic response of the protein by approximately 23%, compared to without attached quantum dots, suggesting direct energy transfer mechanisms beyond photonic emission alone. The ability of quantum dots to activate nanoscale regions on bacteriorhodopsin-based electrodes could allow sub-micron sensing arrays to be created due to the ability to activate site-specific regions on the array.


Assuntos
Bacteriorodopsinas/análise , Bacteriorodopsinas/química , Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Eletrodos , Pontos Quânticos , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa