RESUMO
A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.
Assuntos
Doenças Pulmonares Intersticiais , Síndrome da Persistência do Padrão de Circulação Fetal , Recém-Nascido , Criança , Adulto , Humanos , Membrana Basal , Alvéolos Pulmonares , Pulmão , CapilaresRESUMO
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Assuntos
Genômica , Fibrose Pulmonar Idiopática , Mucina-5B , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Mucina-5B/genética , Predisposição Genética para Doença/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.
Assuntos
Cálcio , Glicocálix , Glicosaminoglicanos , Alvéolos Pulmonares , Proteína A Associada a Surfactante Pulmonar , Proteína D Associada a Surfactante Pulmonar , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Líquido da Lavagem Broncoalveolar , Cálcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismoRESUMO
BACKGROUND: Childhood interstitial lung disease (chILD) encompasses a group of rare heterogeneous respiratory conditions associated with significant morbidity and mortality. Reports suggest that many patients diagnosed with chILD continue to have potentially progressive or fibrosing disease into adulthood. Over the last decade, the spectrum of conditions within chILD has widened substantially, with the discovery of novel entities through advanced genetic testing. However, most evidence is often limited to small case series, with reports disseminated across an array of subspecialty, clinical and molecular journals. In particular, the frequency, management and outcome of paediatric pulmonary fibrosis is not well characterised, unlike in adults, where clear diagnosis and treatment guidelines are available. METHODS AND RESULTS: This review assesses the current understanding of pulmonary fibrosis in chILD. Based on registry data, we have provisionally estimated the occurrence of fibrosis in various manifestations of chILD, with 47 different potentially fibrotic chILD entities identified. Published evidence for fibrosis in the spectrum of chILD entities is assessed, and current and future issues in management of pulmonary fibrosis in childhood, continuing into adulthood, are considered. CONCLUSIONS: There is a need for improved knowledge of chILD among pulmonologists to optimise the transition of care from paediatric to adult facilities. Updated evidence-based guidelines are needed that incorporate recommendations for the diagnosis and management of immune-mediated disorders, as well as chILD in older children approaching adulthood.
RESUMO
RATIONALE: Whole lung lavage (WLL) is a widely accepted palliative treatment for autoimmune pulmonary alveolar proteinosis (aPAP) but does not correct myeloid cell dysfunction or reverse the pathological accumulation of surfactant. In contrast, inhaled recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a promising pharmacological approach that restores alveolar macrophage functions including surfactant clearance. Here, we evaluate WLL followed by inhaled rGM-CSF (sargramostim) as therapy of aPAP. METHODS: 18 patients with moderate-to-severe aPAP were enrolled, received baseline WLL, were randomised into either the rGM-CSF group (receiving inhaled sargramostim) or control group (no scheduled therapy) and followed for 30â months after the baseline WLL. Outcome measures included additional unscheduled "rescue" WLL for disease progression, assessment of arterial blood gases, pulmonary function, computed tomography, health status, biomarkers and adverse events. Patients requiring rescue WLL were considered to have failed their assigned intervention group. RESULTS: The primary end-point of time to first rescue WLL was longer in rGM-CSF-treated patients than controls (30 versus 18â months, n=9 per group, p=0.0078). Seven control patients (78%) and only one rGM-CSF-treated patient (11%) required rescue WLL, demonstrating a 7-fold increase in relative risk (p=0.015). Compared to controls, rGM-CSF-treated patients also had greater improvement in peripheral arterial oxygen tension, alveolar-arterial oxygen tension difference, diffusing capacity of the lungs for carbon monoxide and aPAP biomarkers. One patient from each group withdrew for personal reasons. No serious adverse events were reported. CONCLUSIONS: This long-term, prospective, randomised trial demonstrated inhaled sargramostim following WLL reduced the requirement for WLL, improved lung function and was safe in aPAP patients. WLL plus inhaled sargramostim may be useful as combined therapy for aPAP.
Assuntos
Doenças Autoimunes , Proteinose Alveolar Pulmonar , Surfactantes Pulmonares , Humanos , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Estudos Prospectivos , Administração por Inalação , Resultado do Tratamento , Doenças Autoimunes/tratamento farmacológico , Surfactantes Pulmonares/uso terapêutico , Lavagem Broncoalveolar , Oxigênio/uso terapêutico , Tensoativos/uso terapêutico , BiomarcadoresRESUMO
Interstitial lung diseases (ILD) are a heterogeneous group of rare diffuse diseases affecting the lung parenchyma in children and adults. Childhood interstitial lung diseases (chILD) are often diagnosed at very young age, affect the developing lung, and can have different presentations and prognosis compared to adult forms of these diseases. In addition, chILD in many cases may apparently remit, and have a better response to therapy and better prognosis than adult ILD. Many affected children will reach adulthood with minimal activity or clinical remission of the disease. They need continuing care and follow-up from childhood to adulthood if the disease persists and progresses over time, but also if they are asymptomatic and in full remission. Therefore, for every chILD patient an active transition process from paediatric to adult care should be guaranteed. This European Respiratory Society (ERS) statement provides a review of the literature and current practice concerning transition of care in chILD. It draws on work in existing transition care programmes in other chronic respiratory diseases, disease-overarching transition-of-care programmes, evidence on the impact of these programmes on clinical outcomes, current evidence regarding long-term remission of chILD as well as the lack of harmonisation between the current adult ILD and chILD classifications impacting on transition of care. While the transition system is well established in several chronic diseases, such as cystic fibrosis or diabetes mellitus, we could not find sufficient published evidence on transition systems in chILD. This statement summarises current knowledge, but cannot yet provide evidence-based recommendations for clinical practice.
Assuntos
Doenças Pulmonares Intersticiais , Transição para Assistência do Adulto , Humanos , Doenças Pulmonares Intersticiais/terapia , Doenças Pulmonares Intersticiais/diagnóstico , Criança , Transição para Assistência do Adulto/normas , Transição para Assistência do Adulto/organização & administração , Europa (Continente) , Sociedades Médicas , Adolescente , Prognóstico , Pneumologia/normas , AdultoRESUMO
BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare syndrome caused by several distinct diseases leading to progressive dyspnoea, hypoxemia, risk of respiratory failure and early death due to accumulation of proteinaceous material in the lungs. Diagnostic strategies may include computed tomography (CT) of the lungs, bronchoalveolar lavage, evaluation of antibodies against granulocyte macrophage colony stimulating factor (GM-CSF), genetic testing, and, eventually, lung biopsy. The management options are focused at removing the proteinaceous material by whole lung lavage (WLL), augmentation therapy with GM-CSF, rituximab, plasmapheresis, and lung transplantation. The presented diagnostic and management guideline aim to provide guidance to physicians managing patients with PAP. METHODS: A European Respiratory Society Task Force committee composed of clinicians, methodologists, and patients with experience in PAP developed recommendations in accordance with the ERS Handbook for Clinical Practice Guidelines and the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) approach. This included a systematic review of the literature and application of the GRADE approach to assess the certainty of the evidence and strength of recommendations. The committee formulated five PICO (Patients, Intervention, Comparison, Outcomes) questions, and two narrative questions to develop specific evidence-based recommendations. RESULTS: The Task Force committee developed recommendations for five PICOs. These included management of PAP with WLL, GM-CSF augmentation therapy, rituximab, plasmapheresis, and lung transplantation. Also, the committee made recommendations regarding the use of GM-CSF antibody testing, diagnostic bronchoalveolar lavage (BAL) and biopsy based on narrative questions.In addition to the recommendations, the committee provided information on the hierarchy of diagnostic interventions and therapy. CONCLUSIONS: The diagnosis of PAP is based on CT and BAL cytology or lung histology, whereas diagnosis of specific PAP-causing diseases requires GM-CSF antibody testing or genetic analysis. There are several therapies including WLL and augmentation therapy with GM-CSF available to treat PAP, but supporting evidence is still limited.
RESUMO
BACKGROUND: Progress in rare and interstitial lung disease in childhood can most usefully be achieved through systematic, registry-based collection. QUESTION AND METHODS: What are the practicalities and benefits of participating in the pediatric lung registry/chILD-EU project? We report our clinical experiences. RESULTS: Pediatricians and pediatric pulmonologists identify children with rare lung diseases. These are reported to the Kid's Lung Register after parental consent. Clinical data, imaging, and blood are sent to the registry. Genetic analysis can be arranged if desired. With completeness of the data, a peer-review process by pediatric radiology, possibly lung pathology, clinical and possibly genetic experts takes place in an interdisciplinary conference. A working diagnosis is established and communicated to the responsible physician via the registry and, if necessary, further discussed in case-related discussions. Assistance in entering the data is provided by the registry. Follow-ups are performed annually, and all registered physicians are invited to regular, web-based case discussions. Significant questions are answered in scientific projects and jointly published (>110 publications to date). CONCLUSIONS: Due to voluntary additional work of all participants beyond clinical routine, more than 1000 children with rare lung diseases have been included in the registry with biobank to date. A deeper understanding of the clinical courses of large cohorts of rare diseases and the initial description of new entities contributes to better care for these children.
Assuntos
Doenças Pulmonares Intersticiais , Criança , Humanos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/terapia , Pulmão/diagnóstico por imagem , Sistema de Registros , Doenças Raras/diagnósticoRESUMO
BACKGROUND: Monitoring disease progression in childhood interstitial lung diseases (chILD) is essential. No information for the minimal important difference (MID), which is defined as the smallest change in a parameter that is perceived as important prompting a clinician to change the treatment, is available. We calculated MIDs for vital signs (respiratory rate, peripheral oxygen saturation in room air, Fan severity score) and health-related quality of life (HrQoL) scores. METHODS: This study used data from the Kids Lung Register, which is a web-based management platform that collects data of rare paediatric lung disorders with a focus on chILD. Data of vital signs and HrQoL scores (Health Status Questionnaire, chILD-specific questionnaire and PedsQL V.4.0) were collected. MIDs were calculated according to distribution-based (one-third SD) and anchor-based methods (using forced expiratory volume in 1 s and forced vital capacity) as anchors. RESULTS: Baseline data of 774 children were used to calculate the following MIDs: respiratory rate 1.3 (z-score), O2 saturation in room air 3.0%, Fan severity score 0.2-0.4, Health Status Questionnaire 0.4-0.8, chILD-specific questionnaire 4.4%-8.2%, physical health summary score 7.8%-8.9%, psychosocial health summary score 3.4%-6.9% and total score 5.1%-7.4%. Results of the responsiveness analysis generally agreed with the MIDs calculated. CONCLUSIONS: For the first time, we provide estimates of MIDs for vital signs and HrQoL scores in a large cohort of chILD using different methods.
Assuntos
Doenças Pulmonares Intersticiais , Qualidade de Vida , Humanos , Criança , Qualidade de Vida/psicologia , Doenças Pulmonares Intersticiais/diagnóstico , Pulmão , Nível de Saúde , Inquéritos e QuestionáriosRESUMO
BACKGROUND: The majority of patients with childhood interstitial lung disease (chILD) caused by pathogenic variants in ATP binding cassette subfamily A member 3 (ABCA3) develop severe respiratory insufficiency within their first year of life and succumb to disease if not lung transplanted. This register-based cohort study reviews patients with ABCA3 lung disease who survived beyond the age of 1 year. METHOD: Over a 21-year period, patients diagnosed as chILD due to ABCA3 deficiency were identified from the Kids Lung Register database. 44 patients survived beyond the first year of life and their long-term clinical course, oxygen supplementation and pulmonary function were reviewed. Chest CT and histopathology were scored blindly. RESULTS: At the end of the observation period, median age was 6.3 years (IQR: 2.8-11.7) and 36/44 (82%) were still alive without transplantation. Patients who had never received supplemental oxygen therapy survived longer than those persistently required oxygen supplementation (9.7 (95% CI 6.7 to 27.7) vs 3.0 years (95% CI 1.5 to 5.0), p=0.0126). Interstitial lung disease was clearly progressive over time based on lung function (forced vital capacity % predicted absolute loss -1.1% /year) and on chest CT (increasing cystic lesions in those with repetitive imaging). Lung histology pattern were variable (chronic pneumonitis of infancy, non-specific interstitial pneumonia, and desquamative interstitial pneumonia). In 37/44 subjects, the ABCA3 sequence variants were missense variants, small insertions or deletions with in-silico tools predicting some residual ABCA3 transporter function. CONCLUSION: The natural history of ABCA3-related interstitial lung disease progresses during childhood and adolescence. Disease-modifying treatments are desirable to delay such disease course.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Doenças Pulmonares Intersticiais , Criança , Adolescente , Lactente , Humanos , Estudos de Coortes , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/terapia , Pulmão/metabolismo , Tomografia Computadorizada por Raios X , MutaçãoRESUMO
BACKGROUND: Childhood interstitial lung disease (ILD) comprises a spectrum of rare ILDs affecting infants, children and adolescents. Nintedanib is a licensed treatment for pulmonary fibrosis in adults. The primary objectives of the InPedILD trial were to determine the dose-exposure and safety of nintedanib in children and adolescents with fibrosing ILD. METHODS: Patients aged 6-17â years with fibrosing ILD on high-resolution computed tomography and clinically significant disease were randomised 2:1 to receive nintedanib or placebo for 24â weeks and then open-label nintedanib. Dosing was based on weight-dependent allometric scaling. Co-primary end-points were the area under the plasma concentration-time curve at steady state (AUCτ,ss) at weeks 2 and 26 and the proportion of patients with treatment-emergent adverse events at week 24. RESULTS: 26 patients received nintedanib and 13 patients received placebo. The geometric mean (geometric coefficient of variation) AUCτ,ss for nintedanib was 175â µg·h·L-1 (85.1%) in patients aged 6-11â years and 160â µg·h·L-1 (82.7%) in patients aged 12-17â years. In the double-blind period, adverse events were reported in 84.6% of patients in each treatment group. Two patients discontinued nintedanib due to adverse events. Diarrhoea was reported in 38.5% and 15.4% of the nintedanib and placebo groups, respectively. Adjusted mean±se changes in percentage predicted forced vital capacity at week 24 were 0.3±1.3% in the nintedanib group and -0.9±1.8% in the placebo group. CONCLUSIONS: In children and adolescents with fibrosing ILD, a weight-based dosing regimen resulted in exposure to nintedanib similar to adults and an acceptable safety profile. These data provide a scientific basis for the use of nintedanib in this patient population.
Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Adulto , Humanos , Adolescente , Criança , Progressão da Doença , Doenças Pulmonares Intersticiais/tratamento farmacológico , Fibrose , Capacidade Vital , Método Duplo-Cego , Fibrose Pulmonar Idiopática/tratamento farmacológicoRESUMO
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Doenças Pulmonares Intersticiais/genética , Predisposição Genética para Doença , Mutação , Polimorfismo GenéticoRESUMO
BACKGROUND: In two pivotal phase 3 trials, up to 24â weeks of treatment with elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) was efficacious and safe in patients with cystic fibrosis (CF) ≥12â years of age who have at least one F508del allele. The aim of this study is to assess long-term safety and efficacy of ELX/TEZ/IVA in these patients. METHODS: In this phase 3, open-label, single-arm extension study, participants with F508del-minimal function (from a 24-week parent study; n=399) or F508del-F508del (from a 4-week parent study; n=107) genotypes receive ELX/TEZ/IVA at the same dose (ELX 200â mg once daily, TEZ 100â mg once daily and IVA 150â mg every 12â h). The primary end-point is safety and tolerability. A prespecified interim analysis was conducted when the last participant reached the Week 144 visit. RESULTS: At the Week 144 interim analysis, mean duration of exposure to ELX/TEZ/IVA in the extension study was 151.1â weeks. Exposure-adjusted rates of adverse events (AEs) (586.6 events per 100 participant-years) and serious AEs (22.4 events per 100 participant-years) were lower than in the ELX/TEZ/IVA treatment group in the 24-week parent study (1096.0 and 36.9 events per 100 participant-years, respectively); most participants had AEs classified as mild (16.4% of participants) or moderate (60.3% of participants) in severity. 14 participants (2.8%) had AEs that led to treatment discontinuation. Following initiation of ELX/TEZ/IVA, participants had increases in forced expiratory volume in 1â s (FEV1) percentage predicted, Cystic Fibrosis Questionnaire-Revised respiratory domain score and body mass index, and had decreases in sweat chloride concentration and pulmonary exacerbation rates that were maintained over the interim analysis period. The mean annualised rate of change in FEV1 % pred was +0.07 (95% CI -0.12-0.26) percentage points among the participants. CONCLUSIONS: ELX/TEZ/IVA was generally safe and well tolerated, with a safety profile consistent with the 24-week parent study. Participants had sustained improvements in lung function, respiratory symptoms, CF transmembrane conductance regulator function, pulmonary exacerbation rates and nutritional status. These results support the favourable safety profile and durable, disease-modifying clinical benefits of ELX/TEZ/IVA.
Assuntos
Fibrose Cística , Humanos , Alelos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , MutaçãoRESUMO
The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.
Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Bases de Dados Factuais , Doença/genética , Genoma , Fenótipo , Software , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Recém-Nascido , Cooperação Internacional , Internet , Triagem Neonatal/métodos , Farmacogenética/métodos , Terminologia como AssuntoRESUMO
ATP-binding cassette subfamily A member 3 (ABCA3) is a lipid transporter within alveolar type II cells. Patients with bi-allelic variants in ABCA3 may suffer from a variable severity of interstitial lung disease. We characterized and quantified ABCA3 variants' overall lipid transport function by assessing the in vitro impairment of its intracellular trafficking and pumping activity. We expressed the results relative to the wild type, integrated the quantitative readouts from eight different assays and used newly generated data combined with previous results to correlate the variants' function and clinical phenotype. We differentiated normal (within 1 normalized standard deviation (nSD) of the wild-type mean), impaired (within 1 to 3 nSD) and defective (beyond 3 nSD) variants. The transport of phosphatidylcholine from the recycling pathway into ABCA3+ vesicles proved sensitive to the variants' dysfunction. The sum of the quantitated trafficking and pumping predicted a clinical outcome. More than an approximately 50% loss of function was associated with considerable morbidity and mortality. The in vitro quantification of ABCA3 function enables detailed variant characterization, substantially improves the phenotype prediction of genetic variants and possibly supports future treatment decisions.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Doenças Pulmonares Intersticiais , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células A549 , Doenças Pulmonares Intersticiais/metabolismo , Células Epiteliais Alveolares/metabolismo , Fosfatidilcolinas/metabolismo , Mutação , Pulmão/metabolismoRESUMO
Biallelic variants in ABCA3, the gene encoding the lipid transporter ATP-binding cassette subfamily A member 3 (ABCA3) that is predominantly expressed in alveolar type II cells, may cause interstitial lung diseases in children (chILD) and adults. Currently, there is no proven therapy, but, frequently, hydroxychloroquine (HCQ) is used empirically. We hypothesized that the in vitro responsiveness to HCQ might correlate to patients' clinical outcomes from receiving HCQ therapy. The clinical data of the subjects with chILD due to ABCA3 deficiency and treated with HCQ were retrieved from the literature and the Kids Lung Register data base. The in vitro experiments were conducted on wild type (WT) and 16 mutant ABCA3-HA-transfected A549 cells. The responses of the functional read out were assessed as the extent of deviation from the untreated WT. With HCQ treatment, 19 patients had improved or unchanged respiratory conditions, and 20 had respiratory deteriorations, 5 of whom transiently improved then deteriorated. The in vitro ABCA3 functional assays identified two variants with complete response, five with partial response, and nine with no response to HCQ. The variant-specific HCQ effects in vivo closely correlated to the in vitro data. An ABCA3+ vesicle volume above 60% of the WT volume was linked to responsiveness to HCQ; the HCQ treatment response was concentration dependent and differed for variants in vitro. We generated evidence for an ABCA3 variant-dependent impact of the HCQ in vitro. This may also apply for HCQ treatment in vivo, as supported by the retrospective and uncontrolled data from the treatment of chILD due to ABCA3 deficiency.
Assuntos
Hidroxicloroquina , Doenças Pulmonares Intersticiais , Criança , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Estudos Retrospectivos , Transportadores de Cassetes de Ligação de ATP/genética , Pulmão , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genética , MutaçãoRESUMO
ABCA3 (ATP-binding cassette subfamily A member 3) is a lipid transporter expressed in alveolar type II cells and localized in the limiting membrane of lamellar bodies. It is crucial for pulmonary surfactant storage and homeostasis. Mutations in the ABCA3 gene are the most common genetic cause of respiratory distress syndrome in mature newborns and of interstitial lung disease in children. Apart from lung transplant, there is no cure available. To address the lack of causal therapeutic options for ABCA3 deficiency, a rapid and reliable approach is needed to investigate variant-specific molecular mechanisms and to identify pharmacologic modulators for monotherapies or combination therapies. To this end, we developed a phenotypic cell-based assay to autonomously identify ABCA3 wild-type-like or mutant-like cells by using machine learning algorithms aimed at identifying morphologic differences in wild-type and mutant cells. The assay was subsequently used to identify new drug candidates for ABCA3-specific molecular correction by using high-content screening of 1,280 Food and Drug Administration-approved small molecules. Cyclosporin A was identified as a potent corrector, specific for some but not all ABCA3 variants. Results were validated by using our previously established functional small-format assays. Hence, cyclosporin A may be selected for orphan drug evaluation in controlled repurposing trials in patients.
Assuntos
Doenças Pulmonares Intersticiais , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Transportadores de Cassetes de Ligação de ATP/genética , Criança , Ciclosporina/farmacologia , Humanos , Recém-Nascido , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genética , Mutação/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genéticaRESUMO
By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.
Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Nanismo/genética , Variação Genética , Deficiência Intelectual/genética , Histona Desmetilases com o Domínio Jumonji/genética , Anormalidades Musculoesqueléticas/genética , Estatura , Criança , Exoma , Face , Feminino , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Histonas/química , Humanos , Masculino , Mutação de Sentido Incorreto , FenótipoRESUMO
BACKGROUND: No data on healthcare utilisation and associated costs for the many rare entities of children's interstitial lung diseases (chILD) exist. This paper portrays healthcare utilisation structures among individuals with chILD, provides a pan-European estimate of a 3-month interval per-capita costs and delineates crucial cost drivers. METHODS: Based on longitudinal healthcare resource utilisation pattern of 445 children included in the Kids Lung Register diagnosed with chILD across 10 European countries, we delineated direct medical and non-medical costs of care per 3-month interval. Country-specific utilisation patterns were assessed with a children-tailored modification of the validated FIMA questionnaire and valued by German unit costs. Costs of care and their drivers were subsequently identified via gamma-distributed generalised linear regression models. RESULTS: During the 3 months prior to inclusion into the registry (baseline), the rate of hospital admissions and inpatient days was high. Unadjusted direct medical per capita costs (19 818) exceeded indirect (1 907) and direct non-medical costs (1 125) by far. Country-specific total costs ranged from 8 713 in Italy to 28 788 in Poland. Highest expenses were caused by the disease categories 'diffuse parenchymal lung disease (DPLD)-diffuse developmental disorders' (45 536) and 'DPLD-unclear in the non-neonate' (47 011). During a follow-up time of up to 5 years, direct medical costs dropped, whereas indirect costs and non-medical costs remained stable. CONCLUSIONS: This is the first prospective, longitudinal study analysing healthcare resource utilisation and costs for chILD across different European countries. Our results indicate that chILD is associated with high utilisation of healthcare services, placing a substantial economic burden on health systems.
Assuntos
Custos de Cuidados de Saúde , Doenças Pulmonares Intersticiais , Criança , Europa (Continente) , Humanos , Estudos Longitudinais , Doenças Pulmonares Intersticiais/terapia , Aceitação pelo Paciente de Cuidados de Saúde , Estudos ProspectivosRESUMO
INTRODUCTION: Acute exacerbations (AEs) increase morbidity and mortality of patients with chronic pulmonary diseases. Little is known about the characteristics and impact of AEs on children's interstitial lung disease (chILD). METHODS: The Kids Lung Register collected data on AEs, the clinical course and quality of life (patient-reported outcomes - PRO) of rare paediatric lung diseases. Characteristics of AEs were obtained. RESULTS: Data of 2822 AEs and 2887 register visits of 719 patients with chILD were recorded. AEs were characterised by increased levels of dyspnoea (74.1%), increased respiratory rate (58.6%) and increased oxygen demand (57.4%). Mostly, infections (94.4%) were suspected causing an AE. AEs between two register visits revealed a decline in predicted FEV1 (median -1.6%, IQR -8.0 to 3.9; p=0.001), predicted FVC (median -1.8%, IQR -7.5 to 3.9; p=0.004), chILD-specific questionnaire (median -1.3%, IQR -3.6 to 4.5; p=0.034) and the physical health summary score (median -3.1%, IQR -15.6 to 4.3; p=0.005) compared with no AEs in between visits. During the median observational period of 2.5 years (IQR 1.2-4.6), 81 patients died. For 49 of these patients (60.5%), mortality was associated with an AE. CONCLUSION: This is the first comprehensive study analysing the characteristics and impact on the clinical course of AEs in chILD. AEs have a significant and deleterious effect on the clinical course and health-related quality of life in chILD.