Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 3142-3145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824348

RESUMO

Near-infrared semiconductor lasers subject to optical feedback usually produce chaos with a broad bandwidth of a few GHz. However, the reported mid-infrared interband cascade lasers (ICLs) only show chaos with a limited bandwidth below 1 GHz. Here we show that an ICL with optical feedback is able to generate broadband chaos as well. The mid-infrared chaos exhibits a remarkable bandwidth of about 6 GHz, which is comparable to that of the near-infrared counterpart. In addition, the spectral coverage in the electrical domain reaches as high as 17.7 GHz. It is found that the chaos bandwidth generally broadens with increasing feedback ratio and/or increasing pump current of the laser, while it is insensitive to the feedback length.

2.
Opt Lett ; 49(17): 5007-5010, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208020

RESUMO

This work investigates the impact of carrier noise induced by an external current source on the linewidth enhancement factor (LEF) and relative intensity noise (RIN) of a 100 GHz quantum dot fourth-order colliding-pulse mode-locked laser (MLL), driven by a normal pump with Gaussian-distributed carrier sequences and a quiet pump with sub-Poissonian-distributed carrier sequences. The results indicate that under a normal pump, the LEFs are approximately zero for reverse saturable absorber (SA) bias voltages ranging from 0 to 2.5 V, and the laser achieves a RIN as low as -156 dB/Hz. When using a quiet pump, both the LEF and RIN are reduced across all SA bias conditions, particularly at low reverse SA bias voltages. Specifically, the LEF decreases by up to 0.58 at 0 V, and the average RIN spectrum is reduced by more than 3 dB at the same voltage. This work provides a straightforward approach for the development and optimization of multi-channel light sources for dense wavelength division multiplexing (DWDM) technologies with low optical noise.

3.
Opt Express ; 31(21): 35343-35353, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859268

RESUMO

This paper demonstrates that the linewidth enhancement factor of quantum dot lasers is influenced by the external carrier transport issued from different external current sources. A model combining the rate equation and semi-classical carrier noise is used to investigate the different mechanisms leading to the above phenomenon in the context of a quantum dot distributed feedback laser. Meanwhile, the linewidth enhancement factor extracted from the optical phase modulation method shows dramatic differences when the quantum dot laser is driven by different noise-level pumps. Furthermore, the influence of external carrier noise on the frequency noise in the vicinity of the laser's threshold current directly affects the magnitude of the linewidth enhancement factor. Simulations also investigate how the external carrier transport impacts the frequency noise and the spectral linewidth of the QD laser. Overall, we believe that these results are of paramount importance for the development of on-chip integrated ultra-low noise oscillators producing light at or below the shot-noise level.

4.
Opt Express ; 31(15): 25177-25190, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475329

RESUMO

This work theoretically investigates the relative intensity noise (RIN) and spectral linewidth characteristics of epitaxial quantum dot (QD) lasers on silicon subject to optical injection. The results show that the RIN of QD lasers can be reduced by optical injection, hence a reduction of 10 dB is achieved which leads to a RIN as low as -167.5 dB/Hz in the stable injection-locked area. Furthermore, the spectral linewidth of the QD laser can be greatly improved through the optical injection locked scheme. It is reduced from 556.5 kHz to 9 kHz with injection ratio of -60 dB and can be further reduced down to 1.5 Hz with injection ratio of 0 dB. This work provides an effective method for designing low intensity noise and ultra-narrow linewidth QD laser sources for photonics integrated circuits on silicon.

5.
Opt Lett ; 45(4): 856, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058488

RESUMO

In Opt. Lett.45, 5755 (2019)OPLEDP0146-959210.1364/OL.44.005755, a factor is missing in the result of Eq. (1). Thus, the width of the comb spectrum $ \Delta \nu $Δν becomes $ \Delta \nu = 2{\sqrt 3} \Gamma {\alpha _e} $Δν=23Γαe.

6.
Opt Lett ; 45(17): 4887-4890, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870883

RESUMO

This work experimentally investigates the impact of p-doping on the relative intensity noise (RIN) properties and subsequently on the modulation properties of semiconductor quantum dot (QD) lasers epitaxially grown on silicon. Owing to the low threading dislocation density and the p-modulation doped GaAs barrier layer in the active region, the RIN level is found very stable with temperature with a minimum value of -150dB/Hz. The dynamical features extracted from the RIN spectra show that p-doping between zero and 20 holes/dot strongly modifies the modulation properties and gain nonlinearities through increased internal losses in the active region and thereby hinders the maximum achievable bandwidth. Overall, this Letter is important for designing future high-speed and low-noise QD devices integrated in future photonic integrated circuits.

7.
Opt Lett ; 44(23): 5755-5758, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774771

RESUMO

This work reports on the influence of bias voltage applied on a saturable absorber (SA) on a subthreshold linewidth enhancement factor (LEF) in hybrid-silicon quantum dot optical frequency comb lasers. Results show that the reverse bias voltage on SA contributes to enlarge the LEF and improve the comb dynamics. Optical injection is also found to be able to improve the comb spectrum in terms of 3 dB bandwidth and its flatness. Such novel findings are promising for the development of high-speed dense wavelength-division multiplexing photonic integrated circuits in optical interconnects and datacom applications.

8.
Opt Express ; 26(3): 2325-2334, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401772

RESUMO

This work theoretically investigates the frequency noise (FN) characteristics of quantum cascade lasers (QCLs) through a three-level rate equation model, which takes into account both the carrier noise and the spontaneous emission noise through the Langevin approach. It is found that the power spectral density of the FN exhibits a broad peak due to the carrier noise induced carrier variation in the upper laser level, which is enhanced by the stimulated emission process. The peak amplitude is strongly dependent on the gain stage number and the linewidth broadening factor. In addition, an analytical formula of the intrinsic spectral linewidth of QCLs is derived based on the FN analysis. It is demonstrated that the laser linewidth can be narrowed by reducing the gain coefficient and/or accelerating the carrier scattering rates of the upper and the lower laser levels.

9.
Opt Express ; 26(12): 15167-15176, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114767

RESUMO

This work theoretically investigates the frequency noise (FN) characteristics of quantum cascade lasers subject to the optical injection through a set of coupled rate equations with Langevin noise sources. It is shown that the low-frequency FN is completely suppressed by the optical injection, and the suppression bandwidth increases with the increasing injection ratio. The optimal FN peak suppression ratio at an injection ratio of 10 dB reaches 2.9 dB. In addition, it is found that the optical injection at positive frequency detunings close to the locking boundary invokes an additional peak in the FN spectrum, which can be higher than the carrier noise-induced one of free-running lasers. This peak amplitude strongly depends on the value of the linewidth broadening factor. Unlike injection-locked interband lasers, the FN peak does not necessarily exhibit a resonance.

10.
Opt Express ; 26(2): 1743-1751, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402044

RESUMO

The optical feedback dynamics of two multimode InAs/GaAs quantum dot lasers emitting exclusively on sole ground or excited lasing states is investigated. The transition from long- to short-delay regimes is analyzed, while the boundaries associated to the birth of periodic and chaotic oscillations are unveiled to be a function of the external cavity length. The results show that depending on the initial lasing state, different routes to chaos are observed. These results are of importance for the development of isolator-free transmitters in short-reach networks.

11.
Opt Lett ; 43(2): 210-213, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328240

RESUMO

We experimentally compare the dynamics of InAs/GaAs quantum dot lasers under optical feedback emitting exclusively on ground states (GSs) or excited states (ESs). By varying the feedback parameters and putting focus either on their short or long cavity regions, various periodic and chaotic oscillatory states are found. The GS laser is shown to be more resistant to feedback, benefiting from its strong relaxation oscillation damping. In contrast, the ES laser can easily be driven into complex dynamics. While the GS laser is of importance for the development of isolator-free transmitters, the ES laser is essential for applications taking advantages of chaos.

12.
Opt Express ; 24(26): 29872-29881, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059372

RESUMO

The phase noise of quantum dot lasers is investigated theoretically by coupling the Langevin noise sources into the rate equations. The off-resonant populations in the excited state and in the carrier reservoir contribute to the phase noise of ground-state emission lasers through the phase-amplitude coupling effect. This effect arises from the optical-noise induced carrier fluctuations in the off-resonant states. In addition, the phase noise has low sensitivity to the carrier scattering rates.

13.
Opt Lett ; 41(6): 1153-6, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26977657

RESUMO

We present an experimental investigation on the period-one dynamics of an optically injected InAs/GaAs quantum dot laser as a photonic microwave source. It is shown that the microwave frequency of the quantum dot laser's period-one oscillation is continuously tunable through the adjustment of the frequency detuning. The microwave power is enhanced by increasing the injection strength providing that the operation is away from the Hopf bifurcation, whereas the second-harmonic distortion of the electrical signal is well reduced by increasing the detuning frequency. Both strong optical injection and high detuning frequency are favorable for obtaining a single sideband optical signal. In addition, particular period-one oscillation points of low sensitivity to the frequency detuning are found close to the Hopf bifurcation line.

14.
Opt Express ; 23(17): 21761-70, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368153

RESUMO

Combining theoretical and experimental studies show that optical injection strongly changes the behavior of the linewidth enhancement factor (α(H)-factor) and the FM-to-AM indices ratio (FAIR) in quantum dash/dot semiconductor lasers. In contrast to solitary lasers, both the α(H)-factor and the FAIR at low-frequency modulation are reduced by optical injection. At high modulation frequency, however, the phase-amplitude coupling characteristics are little influenced by optical injection.

15.
Opt Express ; 22(6): 7362-3, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664083

RESUMO

We introduce the Optics Express special issue of the 3rd symposium on Physics and Applications of Laser Dynamics (IS-PALD). This issue consists of expanded papers related to oral and poster presentations. Selected papers represent the best of IS-PALD 2013.

16.
Opt Express ; 22(6): 7222-8, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24664070

RESUMO

By optically injecting a quantum dash laser and simultaneously producing a significant lowering of the device threshold, a large enhancement in the differential gain is realized. This effect is observed by way of a dramatic reduction in the linewidth enhancement factor and a large increase in the 3-dB modulation bandwidth, especially as the injection wavelength is blue-shifted. Compared to its free-running value, a 50X improvement in the laser's differential gain is found.

17.
Opt Express ; 22(5): 5651-8, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663906

RESUMO

The linewidth enhancement factor α of a semiconductor laser under the influences of optical feedback with different feedback strengths, external cavity lengths, and feedback phases are studied both experimentally and theoretically. The value of α is determined from the minimum of the Hopf bifurcation curve when the laser is subject to both optical feedback and optical injection. In the experiment, a pellicle beamsplitter mounted on a PZT stage placed on a linear translation stage is used as the reflector, where the external cavity length can be adjusted continuously from the long cavity regime to the short cavity regime with phase accuracy. With a moderate feedback strength, α is found to increase as the feedback strength increases. Moreover, while α is insensitive to the feedback phase in the long cavity regime, it can be tuned continuously in the short cavity regime when varying the phase. A normalized variation range of 21.59% is obtained experimentally at an external cavity length of 1.5 cm, which can be further enhanced by shortening the external cavity. To the best of our knowledge, this is the first detailed study of α from the long to the short cavity regime in a semiconductor laser subject to optical feedback. More particularly, the continuous tuning of α under phase variation is demonstrated the first time.

18.
Opt Express ; 22(13): 16528-37, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977902

RESUMO

We propose in this paper a self-referenced method based on asynchronous sampling to monitor the waveform of periodic and quasi-periodic signals, with a low number of samples, typically 214 or lower. It provides a high-resolution representation of the signal under test, representative of the analog intensity signal under test. Additionally, the proposed approach is robust to the timing jitter of the signal, as experimentally demonstrated. Such features enable the accurate display of periodic and quasi-periodic signals. The method is applied to the characterization of laser dynamics, such as time series and phase portrait of periodic nonlinear regimes in optically injected lasers.

19.
Light Sci Appl ; 12(1): 162, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380663

RESUMO

Stable laser emission with narrow linewidth is of critical importance in many applications, including coherent communications, LIDAR, and remote sensing. In this work, the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure. Heterogeneously integrated III-V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement. The intrinsic differences are associated with gain saturation and carrier-induced refractive index, which are directly connected with 0- and 2-dimensional carrier densities of states. Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth, output power, and injection current for different device configurations. Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities, the former emits at a higher optical power in the self-injection-locked state, while the latter is more energy-efficient. Lastly, a multi-objective optimization analysis is provided to optimize the operation and design parameters. For the quantum-well laser, minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power. For the quantum-dot laser, increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current. These findings serve to guide more detailed parametric studies to produce timely results for engineering design.

20.
Opt Express ; 20(23): 26062-74, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187422

RESUMO

It is well known that semiconductor distributed feedback lasers (DFB) are key devices for optical communications. However direct modulation applications are limited by the frequency chirp induced by current modulation. We demonstrate that a proper external control laser operation leads to chirp-to-power ratio (CPR) stabilization over a wide range of modulation frequencies as compared to the free-running case. Under experimentally selected optical feedback conditions, the CPR decreases significantly in the adiabatic regime from about 650 MHz/mW in the solitary case down to 65 MHz/mW. Experimental results are also confirmed by numerical investigations based on the transfer matrix method. Simulations point out the possible optimization of the CPR in the adiabatic regime by considering a judicious cavity design in conjunction with a proper external control. These results demonstrate important routes for improving the transmission performance in optical telecommunication systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa