Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834194

RESUMO

Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Escherichia coli/metabolismo , Reparo do DNA , Dano ao DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216329

RESUMO

Human NEIL2 DNA glycosylase (hNEIL2) is a base excision repair protein that removes oxidative lesions from DNA. A distinctive feature of hNEIL2 is its preference for the lesions in bubbles and other non-canonical DNA structures. Although a number of associations of polymorphisms in the hNEIL2 gene were reported, there is little data on the functionality of the encoded protein variants, as follows: only hNEIL2 R103Q was described as unaffected, and R257L, as less proficient in supporting the repair in a reconstituted system. Here, we report the biochemical characterization of two hNEIL2 variants found as polymorphisms in the general population, R103W and P304T. Arg103 is located in a long disordered segment within the N-terminal domain of hNEIL2, while Pro304 occupies a position in the ß-turn of the DNA-binding zinc finger motif. Similar to the wild-type protein, both of the variants could catalyze base excision and nick DNA by ß-elimination but demonstrated a lower affinity for DNA. Steady-state kinetics indicates that the P304T variant has its catalytic efficiency (in terms of kcat/KM) reduced ~5-fold compared with the wild-type hNEIL2, whereas the R103W enzyme is much less affected. The P304T variant was also less proficient than the wild-type, or R103W hNEIL2, in the removal of damaged bases from single-stranded and bubble-containing DNA. Overall, hNEIL2 P304T could be worthy of a detailed epidemiological analysis as a possible cancer risk modifier.


Assuntos
DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA/genética , Polimorfismo Genético/genética , Sequência de Aminoácidos , Quebras de DNA de Cadeia Simples , Dano ao DNA/genética , Reparo do DNA/genética , Humanos
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806289

RESUMO

Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.


Assuntos
DNA Glicosilases , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Humanos
4.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771075

RESUMO

Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 µM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirimidinas/farmacologia , Uracila-DNA Glicosidase/antagonistas & inibidores , Vaccinia virus/enzimologia , Inibidores Enzimáticos/química , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas/química , Uracila-DNA Glicosidase/metabolismo
5.
Nucleic Acids Res ; 46(20): 10827-10839, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30289469

RESUMO

DNA damage can affect various regulatory elements of the genome, with the consequences for DNA structure, dynamics, and interaction with proteins remaining largely unexplored. We used solution NMR spectroscopy, restrained and free molecular dynamics to obtain the structures and investigate dominant motions for a set of DNA duplexes containing CpG sites permuted with combinations of 5-methylcytosine (mC), the primary epigenetic base, and 8-oxoguanine (oxoG), an abundant DNA lesion. Guanine oxidation significantly changed the motion in both hemimethylated and fully methylated DNA, increased base pair breathing, induced BI→BII transition in the backbone 3' to the oxoG and reduced the variability of shift and tilt helical parameters. UV melting experiments corroborated the NMR and molecular dynamics results, showing significant destabilization of all methylated contexts by oxoG. Notably, some dynamic and thermodynamic effects were not additive in the fully methylated oxidized CpG, indicating that the introduced modifications interact with each other. Finally, we show that the presence of oxoG biases the recognition of methylated CpG dinucleotides by ROS1, a plant enzyme involved in epigenetic DNA demethylation, in favor of the oxidized DNA strand. Thus, the conformational and dynamic effects of spurious DNA oxidation in the regulatory CpG dinucleotide can have far-reaching biological consequences.


Assuntos
Metilação de DNA , DNA/genética , Epigênese Genética , Estresse Oxidativo , Proteínas de Arabidopsis/metabolismo , Ilhas de CpG/genética , DNA/química , Enzimas/química , Genoma , Guanina/análogos & derivados , Guanina/química , Humanos , Espectroscopia de Ressonância Magnética , Metilação , Simulação de Dinâmica Molecular , Proteínas Nucleares/metabolismo , Conformação Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Temperatura , Termodinâmica
6.
Bioorg Med Chem Lett ; 28(7): 1248-1251, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29506959

RESUMO

A conjugate of triphosphorylated 2',3'-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183 ±â€¯57 µg/mL, which corresponds to 22 ±â€¯7 µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Didesoxinucleotídeos/farmacologia , Nanopartículas/química , Dióxido de Silício/farmacologia , Nucleotídeos de Uracila/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Didesoxinucleotídeos/síntese química , Didesoxinucleotídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Dióxido de Silício/química , Relação Estrutura-Atividade , Nucleotídeos de Uracila/síntese química , Nucleotídeos de Uracila/química
7.
Front Plant Sci ; 14: 1185440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332716

RESUMO

Sugar beet is one of the most important sugar crops in the world. It contributes greatly to the global sugar production, but salt stress negatively affects the crop yield. WD40 proteins play important roles in plant growth and response to abiotic stresses through their involvement in a variety of biological processes, such as signal transduction, histone modification, ubiquitination, and RNA processing. The WD40 protein family has been well-studied in Arabidopsis thaliana, rice and other plants, but the systematic analysis of the sugar beet WD40 proteins has not been reported. In this study, a total of 177 BvWD40 proteins were identified from the sugar beet genome, and their evolutionary characteristics, protein structure, gene structure, protein interaction network and gene ontology were systematically analyzed to understand their evolution and function. Meanwhile, the expression patterns of BvWD40s under salt stress were characterized, and a BvWD40-82 gene was hypothesized as a salt-tolerant candidate gene. Its function was further characterized using molecular and genetic methods. The result showed that BvWD40-82 enhanced salt stress tolerance in transgenic Arabidopsis seedlings by increasing the contents of osmolytes and antioxidant enzyme activities, maintaining intracellular ion homeostasis and increasing the expression of genes related to SOS and ABA pathways. The result has laid a foundation for further mechanistic study of the BvWD40 genes in sugar beet tolerance to salt stress, and it may inform biotechnological applications in improving crop stress resilience.

8.
Cells ; 10(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202661

RESUMO

It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA's genome integrity. Cosmic radiation due to Earth's weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil-DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth's atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Evolução Molecular , Oxigênio/metabolismo , Alquilação , Animais , Dano ao DNA , Humanos
9.
Biochem Biophys Res Commun ; 394(1): 100-5, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20175991

RESUMO

Pyridoxal-5'-phosphate (PLP), in addition to its known metabolic functions, inactivates many DNA-dependent enzymes through conjugation to their critical amino groups. We have investigated the ability of PLP to inhibit bifunctional DNA repair glycosylases, which possess a catalytic amine. Of six enzymes tested, only endonuclease VIII-like protein 2 (NEIL2) was significantly inhibited by PLP. The inhibition was due to Schiff base formation between PLP and the enzyme. PLP-conjugated NEIL2 completely lost its ability to bind damaged DNA. Liquid chromatography/nanoelectrospray ionization tandem mass spectrometry of the products of proteolysis of pyridoxylated NEIL2 identified Lys50 as the site of modification. Thus, the beta2/beta3 loop where Lys50 is located in NEIL2 is important for DNA binding, presumably lies next to a phosphate-binding site, and may represent a target for regulation of the enzyme activity.


Assuntos
DNA Glicosilases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Animais , DNA Glicosilases/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Bases de Schiff/química , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Espectrometria de Massas em Tandem
10.
Genes (Basel) ; 11(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751599

RESUMO

In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1-DNA product complex was disrupted by DNA polymerase ß (POLß) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLß and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.


Assuntos
DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , DNA/metabolismo , Sítios de Ligação , Proteína 9 Associada à CRISPR/metabolismo , DNA/química , DNA/genética , Dano ao DNA , DNA Glicosilases/química , DNA Polimerase I/metabolismo , DNA Polimerase beta/química , Reparo do DNA , Humanos , Ligação Proteica
11.
J Mol Biol ; 432(6): 1747-1768, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31866293

RESUMO

Base excision DNA repair (BER) is an important process used by all living organisms to remove nonbulky lesions from DNA. BER is usually initiated by DNA glycosylases that excise a damaged base leaving an apurinic/apyrimidinic (AP) site, and an AP endonuclease then cuts DNA at the AP site, and the repair is completed by correct nucleotide insertion, end processing, and nick ligation. It has emerged recently that the BER machinery, in addition to genome protection, is crucial for active epigenetic demethylation in the vertebrates. This pathway is initiated by TET dioxygenases that oxidize the regulatory 5-methylcytosine, and the oxidation products are treated as substrates for BER. T:G mismatch-specific thymine-DNA glycosylase (TDG) and AP endonuclease 1 (APE1) catalyze the first two steps in BER-dependent active demethylation. In addition to the well-structured catalytic domains, these enzymes possess long tails that are structurally uncharacterized but involved in multiple interactions and regulatory functions. In this review, we describe the known roles of the tails in TDG and APE1, discuss the importance of order and disorder in their structure, and consider the evolutionary aspects of these accessory protein regions. We also propose that the tails may be important for the enzymes' oligomerization on DNA, an aspect of their function that only recently gained attention.

12.
J Mol Biol ; 431(6): 1098-1112, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30716333

RESUMO

Endonuclease VIII-like protein 1 (NEIL1) is a DNA repair enzyme found in higher eukaryotes, including humans. It belongs to the helix-two turn-helix (H2TH) structural superfamily together with Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei), and removes a variety of oxidized purine and pyrimidine bases from DNA. Structural, modeling and kinetic studies have established that the bacterial H2TH superfamily enzymes proceed through several conformational intermediates while recognizing and removing their cognate lesions. Here we apply stopped-flow kinetics with detection of intrinsic Trp fluorescence and Förster resonance energy transfer fluorescence to follow the conformational dynamics of human NEIL1 and DNA when the enzyme interacts with undamaged DNA, or DNA containing cleavable or non-cleavable abasic sites, or dihydrouracil lesions. NEIL1 processed a natural abasic site and a damaged base in DNA equally well but showed an additional fluorescently discernible step when DHU was present, likely reflecting additional rearrangements during base eversion into the enzyme's active site. With undamaged DNA and DNA containing a non-cleavable abasic site analog, (3-hydroxytetrahydrofuran-2-yl)methyl phosphate, NEIL1 was diverted to a non-productive DNA conformation early in the reaction. Our results support the view of NEIL1 as an enzyme that actively destabilizes damaged DNA and uses multiple checkpoints along the reaction coordinate to drive substrate lesions into the active site while rejecting normal bases and non-substrate lesions.


Assuntos
DNA Glicosilases/química , DNA Glicosilases/metabolismo , Domínio Catalítico , DNA/química , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/genética , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
13.
Metallomics ; 11(12): 1999-2009, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31555793

RESUMO

In this work we have demonstrated that the ruthenium nitrosyl complex [RuNO(ß-Pic)2(NO2)2OH] is suitable for investigation of the inactivation of DNA repair enzymes in vitro. Photoinduced inhibition of DNA glycosylases such as E. coli Endo III, plant NtROS1, mammalian mNEIL1 and hNEIL2 occurs to an extent of ≥90% after irradiation with the ruthenium complex. The photophysical and photochemical processes of [RuNO(ß-Pic)2(NO2)2OH] were investigated using stationary and time-resolved spectroscopy, and mass spectrometry. A possible mechanism of the photo-processes was proposed from the combined spectroscopic study and DTF calculations, which reveal that the photolysis is multistage. The primary and secondary photolysis stages are the photo-induced cleavage of the Ru-NO bond with the formation of a free nitric oxide and RuIII complex followed by ligand exchange with solvent. For E. coli Endo III, covalent interaction with the photolysis product was confirmed by UV-vis and mass spectrometric methods.


Assuntos
DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Óxido Nítrico/química , Rutênio/química , DNA Glicosilases/química , Enzimas Reparadoras do DNA/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Ativação Enzimática/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massas/métodos , Processos Fotoquímicos/efeitos da radiação , Fotólise/efeitos da radiação , Espectrofotometria/métodos
14.
Data Brief ; 21: 540-547, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30370324

RESUMO

SiO2 nanoparticles were used as a transport system for cellular delivery of phosphorylated 2',3'-dideoxyuridine to increase its anticancer potency. This data set is related to the research article entitled "2',3'-Dideoxyuridine triphosphate conjugated to SiO2 nanoparticles: synthesis and evaluation of antiproliferative activity" (Vasilyeva et al., 2018) [1]. It includes a protocol for the synthesis of 2',3'-dideoxyuridine-5'-{N-[4-(prop-2-yn-1-yloxy)butyl]-γ-amino}-triphosphate, its identification by NMR, IR and ESI-MS, experimental procedure of covalent attachment to SiO2 nanoparticles with via Cu-catalyzed click-chemistry, experimental data on chemical stability of the conjugate at different pH values and cytotoxicity assessment of antiproliferative effect of the conjugate.

15.
FEBS Lett ; 580(20): 4916-22, 2006 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-16920106

RESUMO

Base excision repair (BER) protects cells from nucleobase DNA damage. In eukaryotic BER, DNA glycosylases generate abasic sites, which are then converted to deoxyribo-5'-phosphate (dRP) and excised by a dRP lyase (dRPase) activity of DNA polymerase beta (Polbeta). Here, we demonstrate that NEIL1 and NEIL2, mammalian homologs of bacterial endonuclease VIII, excise dRP by beta-elimination with the efficiency similar to Polbeta. DNA duplexes imitating BER intermediates after insertion of a single nucleotide were better substrates. NEIL1 and NEIL2 supplied dRPase activity in BER reconstituted with dRPase-null Polbeta. Our results suggest a role for NEILs as backup dRPases in mammalian cells.


Assuntos
DNA Glicosilases/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sequência de Aminoácidos , Animais , DNA Glicosilases/genética , DNA Polimerase beta/metabolismo , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Proteínas de Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Alinhamento de Sequência
16.
PLoS One ; 9(3): e92963, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667595

RESUMO

BACKGROUND: Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. METHODOLOGY/PRINCIPAL FINDINGS: We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3'-repair phosphodiesterase, 3'-phosphatase and 3' → 5' exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg(2+) and Ca(2+) (5-10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn(2+), Co(2+) and Fe(2+) cations (0.1-1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6-7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20 °C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3'-blocking sugar-phosphate and 3'-phosphate groups with good efficiency (kcat/KM = 630 and 485 µM(-1) · min(-1), respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. CONCLUSIONS/SIGNIFICANCE: Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Homologia de Sequência do Ácido Nucleico , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Biocatálise , Clonagem Molecular , DNA/química , DNA/genética , DNA/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Conformação Proteica , Especificidade por Substrato
17.
FEBS Lett ; 587(18): 3129-34, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23954288

RESUMO

CpG dinucleotides are targets for epigenetic methylation, many of them bearing 5-methylcytosine (mCyt) in the human genome. Guanine in this context can be easily oxidized to 8-oxoguanine (oxoGua), which is repaired by 8-oxoguanine-DNA glycosylase (OGG1). We have studied how methylation affects the efficiency of oxoGua excision from damaged CpG dinucleotides. Methylation of the adjacent cytosine moderately decreased the oxoGua excision rate while methylation opposite oxoGua lowered the rate of product release. Cytosine methylation abolished stimulation of OGG1 by repair endonuclease APEX1. The OGG1 S326C polymorphic variant associated with lung cancer showed poorer base excision and lost sensitivity to the opposite-base methylation. The overall repair in the system reconstituted from purified proteins decreased for CpG with mCyt in the damaged strand.


Assuntos
Ilhas de CpG/genética , DNA Glicosilases/metabolismo , Epigênese Genética , Guanina/análogos & derivados , Proteínas de Neoplasias/metabolismo , 5-Metilcitosina/metabolismo , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/genética , Metilação de DNA , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanina/metabolismo , Humanos , Cinética , Mutação , Proteínas de Neoplasias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
FEBS Lett ; 584(8): 1553-7, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20214901

RESUMO

8-oxo-7,8-dihydroadenine (8-oxoAde) is a major product of adenine modification by reactive oxygen species. So far, only one mammalian DNA glycosylase, 8-oxoguanine-DNA-glycosylase 1 (OGG1), has been shown to excise 8-oxoAde, exclusively from pairs with Cyt. We have found that endonuclease VIII-like protein 1 (NEIL1), a mammalian homolog of bacterial endonuclease VIII, can efficiently remove 8-oxoAde from 8-oxoAde:Cyt pairs but not from other contexts. In an in vitro reconstituted system, reactions containing OGG1 produced a fully repaired product, whereas NEIL1 caused an abortive initiation of repair, stopping after 8-oxoAde removal and DNA strand cleavage. This block was partially relieved by polynucleotide kinase/3'-phosphatase. Thus, two alternative routes of 8-oxoAde repair may exist in mammals.


Assuntos
Adenina/análogos & derivados , DNA Glicosilases/metabolismo , Reparo do DNA , DNA/química , DNA/metabolismo , Adenina/metabolismo , Animais , Pareamento Incorreto de Bases , Sequência de Bases , DNA/genética , Humanos , Cinética , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa