Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(30): 7813-7818, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29991596

RESUMO

α-Synuclein (α-Syn) aggregation, proceeding from oligomers to fibrils, is one central hallmark of neurodegeneration in synucleinopathies. α-Syn oligomers are toxic by triggering neurodegenerative processes in in vitro and in vivo models. However, the precise contribution of α-Syn oligomers to neurite pathology in human neurons and the underlying mechanisms remain unclear. Here, we demonstrate the formation of oligomeric α-Syn intermediates and reduced axonal mitochondrial transport in human neurons derived from induced pluripotent stem cells (iPSC) from a Parkinson's disease patient carrying an α-Syn gene duplication. We further show that increased levels of α-Syn oligomers disrupt axonal integrity in human neurons. We apply an α-Syn oligomerization model by expressing α-Syn oligomer-forming mutants (E46K and E57K) and wild-type α-Syn in human iPSC-derived neurons. Pronounced α-Syn oligomerization led to impaired anterograde axonal transport of mitochondria, which can be restored by the inhibition of α-Syn oligomer formation. Furthermore, α-Syn oligomers were associated with a subcellular relocation of transport-regulating proteins Miro1, KLC1, and Tau as well as reduced ATP levels, underlying axonal transport deficits. Consequently, reduced axonal density and structural synaptic degeneration were observed in human neurons in the presence of high levels of α-Syn oligomers. Together, increased dosage of α-Syn resulting in α-Syn oligomerization causes axonal transport disruption and energy deficits, leading to synapse loss in human neurons. This study identifies α-Syn oligomers as the critical species triggering early axonal dysfunction in synucleinopathies.


Assuntos
Transporte Axonal , Axônios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Multimerização Proteica , Axônios/patologia , Linhagem Celular , Metabolismo Energético/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , alfa-Sinucleína , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
Traffic ; 16(6): 655-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25712587

RESUMO

Amyloid-ß (Aß)-peptide, the major constituent of the plaques that develop during Alzheimer's disease, is generated via the cleavage of Aß precursor protein (APP) by ß-site APP-cleaving enzyme (BACE). Using live-cell imaging of APP and BACE labeled with pH-sensitive proteins, we could detect the release events of APP and BACE and their distinct kinetics. We provide kinetic evidence for the cleavage of APP by α-secretase on the cellular surface after exocytosis. Furthermore, simultaneous dual-color evanescent field illumination revealed that the two proteins are trafficked to the surface in separate compartments. Perturbing the membrane lipid composition resulted in a reduced frequency of exocytosis and affected BACE more strongly than APP. We propose that surface fusion frequency is a key factor regulating the aggregation of APP and BACE in the same membrane compartment and that this process can be modulated via pharmacological intervention.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Transporte Proteico , Proteólise
3.
Hum Mol Genet ; 23(18): 4859-74, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794856

RESUMO

Hereditary spastic paraplegias are a group of inherited motor neuron diseases characterized by progressive paraparesis and spasticity. Mutations in the spastic paraplegia gene SPG11, encoding spatacsin, cause an autosomal-recessive disease trait; however, the precise knowledge about the role of spatacsin in neurons is very limited. We for the first time analyzed the expression and function of spatacsin in human forebrain neurons derived from human pluripotent stem cells including lines from two SPG11 patients and two controls. SPG11 patients'-derived neurons exhibited downregulation of specific axonal-related genes, decreased neurite complexity and accumulation of membranous bodies within axonal processes. Altogether, these data point towards axonal pathologies in human neurons with SPG11 mutations. To further corroborate spatacsin function, we investigated human pluripotent stem cell-derived neurons and mouse cortical neurons. In these cells, spatacsin was located in axons and dendrites. It colocalized with cytoskeletal and synaptic vesicle (SV) markers and was present in synaptosomes. Knockdown of spatacsin in mouse cortical neurons evidenced that the loss of function of spatacsin leads to axonal instability by downregulation of acetylated tubulin. Finally, time-lapse assays performed in SPG11 patients'-derived neurons and spatacsin-silenced mouse neurons highlighted a reduction in the anterograde vesicle trafficking indicative of impaired axonal transport. By employing SPG11 patient-derived forebrain neurons and mouse cortical neurons, this study provides the first evidence that SPG11 is implicated in axonal maintenance and cargo trafficking. Understanding the cellular functions of spatacsin will allow deciphering mechanisms of motor cortex dysfunction in autosomal-recessive hereditary spastic paraplegia.


Assuntos
Axônios/metabolismo , Neurônios/metabolismo , Prosencéfalo/citologia , Proteínas/metabolismo , Paraplegia Espástica Hereditária/patologia , Animais , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/patologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/metabolismo , Proteínas/genética , Paraplegia Espástica Hereditária/genética , Tubulina (Proteína)/metabolismo
4.
Hum Mol Genet ; 23(10): 2527-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24381312

RESUMO

The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 (SPG4), encoding spastin, are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons, we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684C>T nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased, which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin, these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein, p60 katanin, may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length, branching, numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore, our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients.


Assuntos
Adenosina Trifosfatases/genética , Dosagem de Genes , Paraplegia Espástica Hereditária/genética , Adenosina Trifosfatases/metabolismo , Adulto , Transporte Axonal , Forma Celular , Células Cultivadas , Feminino , Expressão Gênica , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neuritos/metabolismo , Neuritos/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Paraplegia Espástica Hereditária/patologia , Paraplegia Espástica Hereditária/terapia , Espastina
5.
J Mol Cell Cardiol ; 89(Pt B): 335-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454161

RESUMO

KCNQ1 (Kv7.1) proteins form a homotetrameric channel, which produces a voltage-dependent K(+) current. Co-assembly of KCNQ1 with the auxiliary ß-subunit KCNE1 strongly up-regulates this current. In cardiac myocytes, KCNQ1/E1 complexes are thought to give rise to the delayed rectifier current IKs, which contributes to cardiac action potential repolarization. We report here that the type I membrane protein BACE1 (ß-site APP-cleaving enzyme 1), which is best known for its detrimental role in Alzheimer's disease, but is also, as reported here, present in cardiac myocytes, serves as a novel interaction partner of KCNQ1. Using HEK293T cells as heterologous expression system to study the electrophysiological effects of BACE1 and KCNE1 on KCNQ1 in different combinations, our main findings were the following: (1) BACE1 slowed the inactivation of KCNQ1 current producing an increased initial response to depolarizing voltage steps. (2) Activation kinetics of KCNQ1/E1 currents were significantly slowed in the presence of co-expressed BACE1. (3) BACE1 impaired reconstituted cardiac IKs when cardiac action potentials were used as voltage commands, but interestingly augmented the IKs of ATP-deprived cells, suggesting that the effect of BACE1 depends on the metabolic state of the cell. (4) The electrophysiological effects of BACE1 on KCNQ1 reported here were independent of its enzymatic activity, as they were preserved when the proteolytically inactive variant BACE1 D289N was co-transfected in lieu of BACE1 or when BACE1-expressing cells were treated with the BACE1-inhibiting compound C3. (5) Co-immunoprecipitation and fluorescence recovery after photobleaching (FRAP) supported our hypothesis that BACE1 modifies the biophysical properties of IKs by physically interacting with KCNQ1 in a ß-subunit-like fashion. Strongly underscoring the functional significance of this interaction, we detected BACE1 in human iPSC-derived cardiomyocytes and murine cardiac tissue and observed decreased IKs in atrial cardiomyocytes of BACE1-deficient mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Ativação do Canal Iônico , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Masculino , Camundongos , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica , Proteólise
6.
BMC Bioinformatics ; 15: 181, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24915860

RESUMO

BACKGROUND: Various computer-based methods exist for the detection and quantification of protein spots in two dimensional gel electrophoresis images. Area-based methods are commonly used for spot quantification: an area is assigned to each spot and the sum of the pixel intensities in that area, the so-called volume, is used a measure for spot signal. Other methods use the optical density, i.e. the intensity of the most intense pixel of a spot, or calculate the volume from the parameters of a fitted function. RESULTS: In this study we compare the performance of different spot quantification methods using synthetic and real data. We propose a ready-to-use algorithm for spot detection and quantification that uses fitting of two dimensional Gaussian function curves for the extraction of data from two dimensional gel electrophoresis (2-DE) images. The algorithm implements fitting using logical compounds and is computationally efficient. The applicability of the compound fitting algorithm was evaluated for various simulated data and compared with other quantification approaches. We provide evidence that even if an incorrect bell-shaped function is used, the fitting method is superior to other approaches, especially when spots overlap. Finally, we validated the method with experimental data of urea-based 2-DE of Aß peptides andre-analyzed published data sets. Our methods showed higher precision and accuracy than other approaches when applied to exposure time series and standard gels. CONCLUSION: Compound fitting as a quantification method for 2-DE spots shows several advantages over other approaches and could be combined with various spot detection methods.The algorithm was scripted in MATLAB (Mathworks) and is available as a supplemental file.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Proteínas/análise , Doença de Alzheimer , Eletroforese em Gel Bidimensional/métodos , Humanos , Distribuição Normal
7.
J Neural Transm (Vienna) ; 121(2): 211-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24036894

RESUMO

Lithium is an effective mood-stabilizer in the treatment of bipolar affective disorder. While glycogen synthase kinase 3-mediated and inositol depletion-dependent effects of lithium have been described extensively in literature, there is very little knowledge about the consequences of lithium treatment on vesicle recycling and neurotransmitter availability. In the present study we have examined acute and chronic effects of lithium on synaptic vesicle recycling using primary hippocampal neurons. We found that exocytosis of readily releasable pool vesicles as well as recycling pool vesicles was unaffected by acute and chronic treatment within the therapeutic range or at higher lithium concentrations. Consistent with this observation, we also noticed that the network activity and number of active synapses within the network were also not significantly altered after lithium treatment. Taken together, as lithium treatment does not affect synaptic vesicle release at even high concentrations, our data suggest that therapeutic effects of lithium in bipolar affective disorder are not directly related to presynaptic function.


Assuntos
Antimaníacos/farmacologia , Hipocampo/citologia , Lítio/farmacologia , Neurônios/citologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ácidos/farmacologia , Compostos de Amônio/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Exocitose/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Bloqueadores dos Canais de Sódio/farmacologia , Sinapsinas/genética , Sinapsinas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Tetrodotoxina/farmacologia , Fatores de Tempo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
8.
J Fluoresc ; 23(3): 487-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23397486

RESUMO

Concurrent imaging of spectrally distinct fluorescence probes has become an important method for live-cell microscopy experiments in many biological disciplines. The technique enables the identification of a multitude of causal relationships. However, interactions between fluorescent dyes beyond an obvious overlap of their fluorescent spectra are often neglected. Here we present the effects of the well-established fluorescent dyes FM®2-10 or FM®1-43 on the recently introduced pH-dependent probe CypHer™5E. Spectrophotometry as well as live-cell fluorescence microscopy revealed that both FM dyes are effective quenchers of CypHer™5E. Control experiments indicated that this effect is reversible and not due to bleaching. We conclude that, in general, parallel measurements of both dyes are possible, with low FM dye concentrations. Nevertheless, our results implicate that special care has to be taken in such dual colour experiments especially when analysing dynamic CypHer™5E signals in live-cell microscopy.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Compostos de Piridínio/química , Compostos de Amônio Quaternário/química , Animais , Hipocampo/citologia , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Imagem Molecular , Neurônios/citologia , Ratos , Ratos Wistar , Espectrometria de Fluorescência , Vesículas Sinápticas/metabolismo
9.
Biophys J ; 100(3): 593-601, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21281573

RESUMO

Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20-350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes.


Assuntos
Hipocampo/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Artefatos , Endocitose , Exocitose , Corantes Fluorescentes/metabolismo , Hipocampo/citologia , Hipocampo/ultraestrutura , Cinética , Microscopia de Fluorescência , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ratos , Ratos Wistar , Propriedades de Superfície , Vesículas Sinápticas/ultraestrutura , Fatores de Tempo
10.
J Cell Physiol ; 226(2): 362-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20665701

RESUMO

Spastin is a microtubule severing ATPase that regulates intracellular and axonal transport of vesicles. Intracellular vesicle trafficking was analyzed in differentiated SH-SY5Y-neuroblastoma cells, transfected with spastin wild-type and three spastin mutations (ΔN, K388R, S44L) to investigate spastin-mediated effects on the velocity of vesicles, stained with LysoTracker Red®. The vesicle velocity varied considerably between mutations and detailed analysis revealed up to five distinct velocity classes. Microtubule severing by overexpressed wild-type spastin caused reduced vesicle velocity. S44L and ΔN mutations, which were functionally impaired, showed similar velocities as control cells. K388R-transfected cells exhibited an intermediate velocity profile. The results support the idea that spastin mutations not only alter axonal transport, but in addition regulate intracellular trafficking in the cell soma as well.


Assuntos
Adenosina Trifosfatases , Transporte Axonal/fisiologia , Vesículas Citoplasmáticas/metabolismo , Mutação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Genes Reporter , Humanos , Lisossomos/metabolismo , Espastina
11.
Eur Biophys J ; 40(9): 1061-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21695534

RESUMO

Cargo movement along axons and dendrites is indispensable for the survival and maintenance of neuronal networks. Key parameters of this transport such as particle velocities and pausing times are often studied using kymograph construction, which converts the transport along a line of interest from a time-lapse movie into a position versus time image. Here we present a method for the automatic analysis of such kymographs based on the Hough transform, which is a robust and fast technique to extract lines from images. The applicability of the method was tested on simulated kymograph images and real data from axonal transport of synaptophysin and tetanus toxin as well as the velocity analysis of synaptic vesicle sharing between adjacent synapses in hippocampal neurons. Efficiency analysis revealed that the algorithm is able to detect a wide range of velocities and can be used at low signal-to-noise ratios. The present work enables the quantification of axonal transport parameters with high throughput with no a priori assumptions and minimal human intervention.


Assuntos
Axônios/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Quimografia/métodos , Movimento , Algoritmos , Animais , Automação , Benchmarking , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sinapses/metabolismo , Sinaptofisina/metabolismo , Toxina Tetânica/metabolismo , Fatores de Tempo
12.
Nat Neurosci ; 10(2): 145-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17220885

RESUMO

Recently, it has been claimed that vesicles recycling spontaneously and during activity belong to different pools. Here we simultaneously measured, using spectrally separable styryl dyes, the release kinetics of vesicles recycled spontaneously or upon stimulation and the effects of the v-ATPase blocker folimycin on the frequency of miniature postsynaptic currents in rat hippocampal neurons. Our results provide evidence as to the identities of the vesicle pools recycling at rest and during stimulation.


Assuntos
Hipocampo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Hipocampo/ultraestrutura , Macrolídeos/farmacologia , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Compostos de Piridínio , Compostos de Amônio Quaternário , Ratos , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo
13.
J Cell Physiol ; 224(1): 152-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20301195

RESUMO

Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pK(a) value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution.


Assuntos
Amantadina/farmacologia , Amitriptilina/farmacologia , Cinarizina/farmacologia , Flavoxato/farmacologia , Lisossomos/efeitos dos fármacos , Amantadina/química , Amantadina/metabolismo , Aminas , Amitriptilina/química , Amitriptilina/metabolismo , Cátions , Linhagem Celular Tumoral , Cinarizina/química , Cinarizina/metabolismo , Simulação por Computador , Retroalimentação Fisiológica , Flavoxato/química , Flavoxato/metabolismo , Corantes Fluorescentes , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Tamanho das Organelas , Permeabilidade
14.
Cell Physiol Biochem ; 26(1): 9-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20502000

RESUMO

Acid sphingomyelinase (ASM) is an important lipid-metabolizing enzyme cleaving sphingomyelin to ceramide, mainly within lysosomes. Acid ceramidase (AC) further degrades ceramide to sphingosine which can then be phosphorylated to sphingosine-1-phosphate. Ceramide and its metabolite sphingosine-1-phosphate have been shown to antagonistically regulate apoptosis, cellular differentiation, proliferation and cell migration. Inhibitors of ASM or AC therefore hold promise for a number of new clinical therapies, e.g. for Alzheimer's disease and major depression on the one hand and cancer on the other. Inhibitors of ASM have been known for a long time. Cationic amphiphilic substances induce the detachment of ASM protein from inner lysosomal membranes with its consecutive inactivation, thereby working as functional inhibitors of ASM. We recently experimentally identified a large number of hitherto unknown functional inhibitors of ASM and determined specific physicochemical properties of such cationic amphiphilic substances that functionally inhibit ASM. We propose the acronym "FIASMA" (Functional Inhibitor of Acid SphingoMyelinAse) for members of this large group of compounds with a broad range of new clinical indications. FIASMAs differ markedly with respect to molecular structure and current clinical indication. Most of the available FIASMAs are licensed for medical use in humans, are minimally toxic and may therefore be applied for disease states associated with increased activity of ASM.


Assuntos
Inibidores de Fosfodiesterase/química , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/metabolismo , Doença de Alzheimer/tratamento farmacológico , Ensaios Clínicos como Assunto , Desipramina/química , Desipramina/farmacocinética , Desipramina/uso terapêutico , Humanos , Inibidores de Fosfodiesterase/farmacocinética , Inibidores de Fosfodiesterase/uso terapêutico , Esfingomielina Fosfodiesterase/metabolismo
16.
Opt Express ; 18(13): 13516-28, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588482

RESUMO

In this work we systematically explored performance of an EM-CCD as a detector for spatially resolved total internal reflection image correlation spectroscopy (TIR-ICS) with respect to adjustable parameters. We show that variations in the observation volume (pixel binning) can be well described by a simple structural term omega. To test the sensitivity of camera-based TIR-ICS we measured diffusion coefficients and particle numbers (PN) of fluorescent probes of different sizes (Fluorospheres, GFP and labeled antibodies) at varying viscosities, concentrations, and sampling rates. TIR-ICS allowed distinguishing between different probe concentrations with differences in PN of 5% and differences of 6% in D by acquiring only 15 independent measurement runs.


Assuntos
Imunoglobulina G/química , Microscopia de Fluorescência/instrumentação , Modelos Teóricos , Análise Espectral/instrumentação , Animais , Difusão , Proteínas de Fluorescência Verde/química , Técnicas de Diluição do Indicador , Camundongos , Microesferas , Tamanho da Partícula , Coelhos , Especificidade da Espécie
17.
J Circadian Rhythms ; 8: 10, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21059197

RESUMO

BACKGROUND: Animals, including humans, exhibit a variety of biological rhythms. This article describes a method for the detection and simultaneous comparison of multiple nycthemeral rhythms. METHODS: A statistical method for detecting periodic patterns in time-related data via harmonic regression is described. The method is particularly capable of detecting nycthemeral rhythms in medical data. Additionally a method for simultaneously comparing two or more periodic patterns is described, which derives from the analysis of variance (ANOVA). This method statistically confirms or rejects equality of periodic patterns. Mathematical descriptions of the detecting method and the comparing method are displayed. RESULTS: Nycthemeral rhythms of incidents of bodily harm in Middle Franconia are analyzed in order to demonstrate both methods. Every day of the week showed a significant nycthemeral rhythm of bodily harm. These seven patterns of the week were compared to each other revealing only two different nycthemeral rhythms, one for Friday and Saturday and one for the other weekdays.

18.
Eur Arch Psychiatry Clin Neurosci ; 259 Suppl 2: S199-204, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19876679

RESUMO

Major depression is a severe mood disorder with a lifetime prevalence of more than 10%. The pharmacokinetic hypothesis claims that a slow accumulation of antidepressant drugs by acid trapping mainly into lysosomes is responsible for the therapeutic latency and that a lysosomal target mediates the antidepressant effects. The lysosomal lipid metabolizing enzyme acid sphingomyelinase (ASM) cleaves sphingomyelin into ceramide and phosphorylcholine. In a pilot study, the activity of this enzyme was increased in peripheral blood cells of patients with major depressive disorder (MDD), making the ASM an interesting molecular target of antidepressant drugs. Indeed, several antidepressant drugs functionally inhibit ASM. The ASM/ceramide pathway might be a missing link unifying independent findings in neurobiology and the treatment of MDD such as therapeutic latency, oxidative stress, immune activation and increased risk of cardiovascular disease.


Assuntos
Ceramidas/fisiologia , Transtorno Depressivo Maior/fisiopatologia , Antidepressivos/farmacocinética , Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/psicologia , Método Duplo-Cego , Humanos , Esfingomielina Fosfodiesterase/efeitos dos fármacos , Esfingomielina Fosfodiesterase/metabolismo
19.
Methods Mol Biol ; 1601: 195-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470527

RESUMO

Neurons and their function of conveying information across a chemical synapse are highly regulated systems. Impacts on their functional viability can occur independently from changes in morphology. Here we describe a method to assess the size of synaptic vesicle pools using live cell fluorescence imaging and a genetically encoded probe (pHluorin). Assessing functional parameters such as the size of synaptic vesicle pools can be a valuable addition to common assays of neuronal cell viability as they demonstrate that key cellular functions are intact.


Assuntos
Sobrevivência Celular , Proteínas de Fluorescência Verde/química , Neurônios/fisiologia , Imagem Óptica/métodos , Sinapses/fisiologia , Vesículas Sinápticas/química , Trifosfato de Adenosina/metabolismo , Animais , Estimulação Elétrica , Macrolídeos/metabolismo , Microscopia de Fluorescência , Cultura Primária de Células , Ratos , Transmissão Sináptica
20.
PLoS One ; 10(11): e0140706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26559531

RESUMO

PURPOSE: Depression/anxiety, impaired Health-Related Quality of Life (HRQoL) and coping and resilience structures, are associated with increased mortality/poor outcome in chronic kidney disease (CKD) patients before (CKD/pre-KT) and after kidney (CKD-T) transplantation. Less is known about prevalence rates of psychiatric symptoms and impaired HRQoL of non-transplanted compared with transplanted patients. METHODS: In a cross-sectional study comparing 101 CKD/pre-KT patients with 151 cadaveric-transplanted (CKD-T) patients, we examined prevalence of depression/anxiety (HADS questionnaire) and coping, resilience and HRQoL (SF-12, Resilience-Scale and FKV-questionnaire). RESULTS: The prevalence of both depressive and anxiety symptoms was not significantly different between different pre-/and CKD-T patient groups. In CKD-T no significant relations of coping strategies with kidney function were identified. Furthermore, the Resilience Scales for acceptance and competence did not suggest any differences between the CKD/pre-KT and CKD-T subgroup. In the CKD/pre-KT patients, significant correlations were identified between the acceptance subscale and partnership, as well as between the competence subscale and older age/partnership. CONCLUSIONS: Both the CKD/pre-KT and CKD-T patients exhibited notable impairments in the HRQoL which which showed a comparable pattern of results. KT itself does not appear to be the main risk factor for the development of mental impairments.


Assuntos
Adaptação Psicológica , Ansiedade/psicologia , Depressão/psicologia , Transplante de Rim/psicologia , Resiliência Psicológica , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa