Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(6): 3135-3143, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980519

RESUMO

The objective of this study was to examine FoxO expression and FoxO function in meniscus. In menisci from human knee joints with osteoarthritis (OA), FoxO1 and 3 expression were significantly reduced compared with normal menisci from young and old normal donors. The expression of FoxO1 and 3 was also significantly reduced in mouse menisci during aging and OA induced by surgical meniscus destabilization or mechanical overuse. Deletion of FoxO1 and combined FoxO1, 3, and 4 deletions induced abnormal postnatal meniscus development in mice and these mutant mice spontaneously displayed meniscus pathology at 6 mo. Mice with Col2Cre-mediated deletion of FoxO3 or FoxO4 had normal meniscus development but had more severe aging-related damage. In mature AcanCreERT2 mice, the deletion of FoxO1, 3, and 4 aggravated meniscus lesions in all experimental OA models. FoxO deletion suppressed autophagy and antioxidant defense genes and altered several meniscus-specific genes. Expression of these genes was modulated by adenoviral FoxO1 in cultured human meniscus cells. These results suggest that FoxO1 plays a key role in meniscus development and maturation, and both FoxO1 and 3 support homeostasis and protect against meniscus damage in response to mechanical overuse and during aging and OA.


Assuntos
Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Articulação do Joelho/metabolismo , Menisco/metabolismo , Osteoartrite/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/análise , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/análise , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Masculino , Menisco/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
2.
Connect Tissue Res ; 61(2): 229-243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31134817

RESUMO

Purpose: Scaffold-free cartilage tissue engineering circumvents issues with scaffold seeding, potential toxicity response, and impaired host integration. However, precisely controlling and maintaining a scaffold-free construct shape have been challenging. We explored the feasibility of microneedle arrays to print tissue using cellular microspheroids as building blocks.Materials and Methods: Human embryonic-derived mesenchymal stem cells or infrapatellar fat pad mesenchymal stem cells were used to create microspheroids of 500 µm in diameter, which were assembled on microneedle arrays in a predefined arrangement using a robotic system under computer vision. Microspheroids on microneedles were cultured to permit fusion into a tissue construct. Infrapatellar fat pad mesenchymal stem cell constructs were either implanted into chondral defects created in human osteoarthritic cartilage explants or maintained on the microneedle array for 3 weeks. Embryonic-derived mesenchymal stem cell constructs were designed to be press-fit into 3 mm subchondral defects in New Zealand White rabbits and maintained for up to 8 weeks to assess retention, early tissue repair, and more mature cartilage regeneration.Results: Microspheroids of both cell types fused together in culture to form neotissues of predefined shape and size. Infrapatellar fat pad mesenchymal stem cell neotissues expressed high levels of chondrogenic genes and integrated with the surrounding osteoarthritic host cartilage. Embryonic-derived mesenchymal stem cell constructs generated chondrogenic neotissue in vivo as early as 2 weeks and more mature tissue by 8 weeks with increased glycosaminoglycan deposition.Conclusions: We constructed defined scaffold-free shapes by bioprinting and fusing microspheroids. Proof of concept was shown in the repair of ex vivo osteoarthritic human cartilage and in vivo rabbit osteochondral (OC) defects.


Assuntos
Cartilagem , Condrogênese , Células-Tronco Embrionárias Humanas/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteoartrite , Procedimentos Cirúrgicos Robóticos , Engenharia Tecidual , Idoso , Animais , Cartilagem/lesões , Cartilagem/metabolismo , Cartilagem/patologia , Feminino , Células-Tronco Embrionárias Humanas/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Agulhas , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/terapia , Coelhos
3.
Connect Tissue Res ; 58(3-4): 259-270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27925477

RESUMO

PURPOSE: Meniscus contains heterogeneous populations of cells that have not been fully characterized. Cell phenotype is often lost during culture; however, culture expansion is typically required for tissue engineering. We examined and compared cell-surface molecule expression levels on human meniscus cells from the vascular and avascular regions and articular chondrocytes while documenting changes during culture-induced dedifferentiation. MATERIALS AND METHODS: Expressions of 16 different surface molecules were examined by flow cytometry after monolayer culture for 24 h, 1 week, and 2 weeks. Menisci were also immunostained to document the spatial distributions of selected surface molecules. RESULTS: Meniscus cells and chondrocytes exhibited several similarities in surface molecule profiles with dynamic changes during culture. A greater percentage of meniscal cells were positive for CD14, CD26, CD49c, and CD49f compared to articular chondrocytes. Initially, more meniscal cells from the vascular region were positive for CD90 compared to cells from the avascular region or chondrocytes. Cells from the vascular region also expressed higher levels of CD166 and CD271 compared to cells from the avascular region. CD90, CD166, and CD271-positive cells were predominately perivascular in location. However, CD166-positive cells were also located in the superficial layer and in the adjacent synovial and adipose tissue. CONCLUSIONS: These surface marker profiles provide a target phenotype for differentiation of progenitors in tissue engineering. The spatial location of progenitor cells in meniscus is consistent with higher regenerative capacity of the vascular region, while the surface progenitor subpopulations have potential to be utilized in tears created in the avascular region.


Assuntos
Menisco/citologia , Engenharia Tecidual/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Fluorescência , Humanos , Masculino , Menisco/irrigação sanguínea , Pessoa de Meia-Idade , Fenótipo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo , Transcriptoma , Adulto Jovem
4.
NMR Biomed ; 28(12): 1754-1762, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26527298

RESUMO

Bone water exists in different states with the majority bound to the organic matrix and to mineral, and a smaller fraction in 'free' form in the pores of cortical bone. In this study, we aimed to develop and evaluate ultrashort-TE (UTE) MRI techniques for the assessment of T2*, T1 and concentration of collagen-bound and pore water in cortical bone using a 3-T clinical whole-body scanner. UTE MRI, together with an isotope study using tritiated and distilled water (THO-H2O) exchange, as well as gravimetric analysis, were performed on ten sectioned bovine bone samples. In addition, 32 human cortical bone samples were prepared for comparison between the pore water concentration measured with UTE MRI and the cortical porosity derived from micro-computed tomography (µCT). A short T2* of 0.27 ± 0.03 ms and T1 of 116 ± 6 ms were observed for collagen-bound water in bovine bone. A longer T2* of 1.84 ± 0.52 ms and T1 of 527 ± 28 ms were observed for pore water in bovine bone. UTE MRI measurements showed a pore water concentration of 4.7-5.3% by volume and collagen-bound water concentration of 15.7-17.9% in bovine bone. THO-H2O exchange studies showed a pore water concentration of 5.9 ± 0.6% and collagen-bound water concentration of 18.1 ± 2.1% in bovine bone. Gravimetric analysis showed a pore water concentration of 6.3 ± 0.8% and collagen-bound water concentration of 19.2 ± 3.6% in bovine bone. A mineral water concentration of 9.5 ± 0.6% was derived in bovine bone with the THO-H2O exchange study. UTE-measured pore water concentration is highly correlated (R(2) = 0.72, p < 0.0001) with µCT porosity in the human cortical bone study. Both bovine and human bone studies suggest that UTE sequences could reliably measure collagen-bound and pore water concentration in cortical bone using a clinical scanner.


Assuntos
Água Corporal/metabolismo , Colágeno/metabolismo , Fêmur/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Bovinos , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Porosidade , Ligação Proteica , Radiografia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
5.
Arthritis Rheum ; 65(2): 418-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124445

RESUMO

OBJECTIVE: To identify novel genes and pathways specific to the superficial zone (SZ), middle zone (MZ), and deep zone (DZ) of normal articular cartilage. METHODS: Articular cartilage was obtained from the knees of 4 normal human donors. The cartilage zones were dissected on a microtome. RNA was analyzed on human genome arrays. The zone-specific DNA array data obtained from human tissue were compared to array data obtained from bovine cartilage. Genes differentially expressed between zones were evaluated using direct annotation for structural or functional features, and by enrichment analysis for integrated pathways or functions. RESULTS: The greatest differences in genome-wide RNA expression data were between the SZ and DZ in both human and bovine cartilage. The MZ, being a transitional zone between the SZ and DZ, thereby shared some of the same pathways as well as structural/functional features of the adjacent zones. Cellular functions and biologic processes that were enriched in the SZ relative to the DZ included, most prominently, extracellular matrix-receptor interactions, cell adhesion molecule functions, regulation of actin cytoskeleton, ribosome-related functions, and signaling aspects such as the IFN, IL4, Cdc42/Rac, and JAK/STAT signaling pathways. Two pathways were enriched in the DZ relative to the SZ, including PPARG and EGFR/SMRTE. CONCLUSION: These differences in cartilage zonal gene expression identify new markers and pathways that govern the unique differentiation status of chondrocyte subpopulations.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Expressão Gênica , Articulação do Joelho/metabolismo , Animais , Cartilagem Articular/citologia , Bovinos , Condrócitos/citologia , Humanos , Articulação do Joelho/citologia , Especificidade de Órgãos
6.
Proc Natl Acad Sci U S A ; 107(22): 10202-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479257

RESUMO

The balance between anabolic and catabolic signaling pathways is critical in maintaining cartilage homeostasis and its disturbance contributes to joint diseases such as osteoarthritis (OA). A unique mechanism that modulates the activity of cell signaling pathways is controlled by extracellular heparan endosulfatases Sulf-1 and Sulf-2 (Sulfs) that are overexpressed in OA cartilage. This study addressed the role of Sulfs in cartilage homeostasis and in regulating bone morphogenetic protein (BMP)/Smad and fibroblast growth factor (FGF)/Erk signaling in articular cartilage. Spontaneous cartilage degeneration and surgically induced OA were significantly more severe in Sulf-1(-/-) and Sulf-2(-/-) mice compared with wild-type mice. MMP-13, ADAMTS-5, and the BMP antagonist noggin were elevated whereas col2a1 and aggrecan were reduced in cartilage and chondrocytes from Sulf(-/-) mice. Articular cartilage and cultured chondrocytes from Sulf(-/-) mice showed reduced Smad1 protein expression and Smad1/5 phosphorylation, whereas Erk1/2 phosphorylation was increased. In human chondrocytes, Sulfs siRNA reduced Smad phosphorylation but enhanced FGF-2-induced Erk1/2 signaling. These findings suggest that Sulfs simultaneously enhance BMP but inhibit FGF signaling in chondrocytes and maintain cartilage homeostasis. Approaches to correct abnormal Sulf expression have the potential to protect against cartilage degradation and promote cartilage repair in OA.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Sulfatases/metabolismo , Proteínas ADAM/genética , Proteína ADAMTS5 , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteínas de Transporte/genética , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Homeostase , Humanos , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/etiologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismo , Sulfatases/antagonistas & inibidores , Sulfatases/deficiência , Sulfatases/genética , Sulfotransferases/deficiência , Sulfotransferases/genética , Sulfotransferases/metabolismo
7.
Tissue Eng Part A ; 29(5-6): 127-140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36458467

RESUMO

Objectives: Successful tissue regeneration requires a clinically viable source of mesenchymal stem cells (MSCs). We explored activin receptor-like kinase (ALK)-5 inhibitors to rapidly derive an MSC-like phenotype with high cartilage forming capacity from a xeno-free human embryonic cell line. Methods: Embryonic stem cell (ESC) lines (H9 and HADC100) were treated with the ALK-5 inhibitor SB431542; HADC100 cells were additionally treated with ALK-5 inhibitors SB525334 or GW788388. Cells were then seeded upon human fibronectin in the presence of fibroblast growth factor 2 (FGF2) in a serum-free medium. Flow cytometry was used to assess MSC markers (positive for CD73, CD90, and CD105; negative for CD34 and CD45). Differentiation status was assessed through quantitative polymerase chain reaction. Cartilage forming capacity was determined in high-density pellet cultures, in fibrin gels containing extracellular matrix (fibrin-ECM), and after implantation in ex vivo human osteoarthritic cartilage. Gene expression, histology, and immunostaining were used to assess cartilage phenotype, tissue regeneration, and integration. Results: Exposure to all three ALK-5 inhibitors lead to expression of mesodermal gene markers and differentiation into MSC-like cells (embryonic stem cell-derived mesenchymal stem cells [ES-MSCs]) based on surface marker expression. ES-MSC in pellet cultures or in fibrin-ECM gels expressed high levels of chondrogenic genes: COL2A1, ACAN, and COMP; and low levels of COL1A1 and RUNX2. Cell pellets or fibrin constructs implanted into ex vivo human osteoarthritic cartilage defects produced GAG-rich (safranin O positive) and collagen type II-positive neocartilage tissues that integrated well with native diseased tissue. Conclusions: We developed a protocol for rapid differentiation of xeno-free ESC into MSC-like cells with high cartilage forming capacity with potential for clinical applications. Impact statement Osteoarthritis (OA) is a common disease resulting in significant disability and no approved disease modifying treatment (other than total joint replacement). Embryonic stem cell-derived cell therapy has the potential to benefit patients with cartilage lesions leading to OA and may prevent or delay the need for total joint replacement.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Receptor do Fator de Crescimento Transformador beta Tipo I , Humanos , Cartilagem , Diferenciação Celular , Células Cultivadas , Condrogênese/genética , Osteoartrite/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores
8.
Front Bioeng Biotechnol ; 10: 810705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186903

RESUMO

Nanofibrous scaffolds fabricated via electrospinning have been proposed for meniscus tissue regeneration. However, the electrospinning process is slow, and can only generate scaffolds of limited thickness with densely packed fibers, which limits cell distribution within the scaffold. In this study, we explored whether pneumatospinning could produce thicker collagen type I fibrous scaffolds with higher porosity, that can support cell infiltration and neo-fibrocartilage tissue formation for meniscus tissue engineering. We pneumatospun scaffolds with solutions of collagen type I with thicknesses of approximately 1 mm in 2 h. Scanning electron microscopy revealed a mix of fiber sizes with diameters ranging from 1 to 30 µm. The collagen scaffold porosity was approximately 48% with pores ranging from 7.4 to 100.7 µm. The elastic modulus of glutaraldehyde crosslinked collagen scaffolds was approximately 45 MPa, when dry, which reduced after hydration to 0.1 MPa. Mesenchymal stem cells obtained from the infrapatellar fat pad were seeded in the scaffold with high viability (>70%). Scaffolds seeded with adipose-derived stem cells and cultured for 3 weeks exhibited a fibrocartilage meniscus-like phenotype (expressing COL1A1, COL2A1 and COMP). Ex vivo implantation in healthy bovine and arthritic human meniscal explants resulted in the development of fibrocartilage-like neotissues that integrated with the host tissue with deposition of glycosaminoglycans and collagens type I and II. Our proof-of-concept study indicates that pneumatospinning is a promising approach to produce thicker biomimetic scaffolds more efficiently that electrospinning, and with a porosity that supports cell growth and neo-tissue formation using a clinically relevant cell source.

9.
Cartilage ; 12(1): 112-120, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373381

RESUMO

OBJECTIVE: Mouse models are commonly used in research applications due to the relatively low cost, highly characterized strains, as well as the availability of many genetically modified phenotypes. In this study, we characterized an ex vivo murine osteochondral repair model using human infrapatellar fat pad (IPFP) progenitor cells. DESIGN: Femurs from euthanized mice were removed and clamped in a custom multidirectional vise to create cylindrical osteochondral defects 0.5 mm in diameter and 0.5 mm deep in both condyles. The IPFP contains progenitors that are a promising cell source for the repair of osteochondral defects. For proof of concept, human IPFP-derived progenitor cells, from osteoarthritic (OA) patients, cultured as pellets, were implanted into the defects and cultured in serum-free medium with TGFß3 for 3 weeks and then processed for histology and immunostaining. RESULTS: The custom multidirectional vise enabled reproducible creation of osteochondral defects in murine femoral condyles. Implantation of IPFP-derived progenitor cells led to development of cartilaginous tissue with Safranin O staining and deposition of collagen type II in the extracellular matrix. CONCLUSIONS: We showed feasibility in creating ex vivo osteochondral defects and demonstrated the regenerative potential of OA human IPFP-derived progenitors in mouse femurs. The murine model can be used to study the effects of aging and OA on tissue regeneration and to explore molecular mechanisms of cartilage repair using genetically modified mice.


Assuntos
Tecido Adiposo/citologia , Doenças das Cartilagens/terapia , Cartilagem Articular/transplante , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Animais , Doenças das Cartilagens/etiologia , Fêmur , Humanos , Camundongos , Modelos Biológicos , Patela/citologia , Estudo de Prova de Conceito , Células-Tronco
10.
Nanomedicine (Lond) ; 15(25): 2517-2538, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32975146

RESUMO

The knee menisci are critical to the long-term health of the knee joint. Because of the high incidence of injury and degeneration, replacing damaged or lost meniscal tissue is extremely clinically relevant. The multiscale architecture of the meniscus results in unique biomechanical properties. Nanofibrous scaffolds are extremely attractive to replicate the biochemical composition and ultrastructural features in engineered meniscus tissue. We review recent advances in electrospinning to generate nanofibrous scaffolds and the current state-of-the-art of electrospun materials for meniscal regeneration. We discuss the importance of cellular function for meniscal tissue engineering and the application of cells derived from multiple sources. We compare experimental models necessary for proof of concept and to support translation. Finally, we discuss future directions and potential for technological innovations.


Assuntos
Menisco , Nanofibras , Engenharia Tecidual , Alicerces Teciduais
11.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115953

RESUMO

Meniscus tears are common knee injuries and a major osteoarthritis (OA) risk factor. Knowledge gaps that limit the development of therapies for meniscus injury and degeneration concern transcription factors that control the meniscus cell phenotype. Analysis of RNA sequencing data from 37 human tissues in the Genotype-Tissue Expression database and RNA sequencing data from meniscus and articular cartilage showed that transcription factor Mohawk (MKX) is highly enriched in meniscus. In human meniscus cells, MKX regulates the expression of meniscus marker genes, OA-related genes, and other transcription factors, including Scleraxis (SCX), SRY Box 5 (SOX5), and Runt domain-related transcription factor 2 (RUNX2). In mesenchymal stem cells (MSCs), the combination of adenoviral MKX (Ad-MKX) and transforming growth factor-ß3 (TGF-ß3) induced a meniscus cell phenotype. When Ad-MKX-transduced MSCs were seeded on TGF-ß3-conjugated decellularized meniscus scaffold (DMS) and inserted into experimental tears in meniscus explants, they increased glycosaminoglycan content, extracellular matrix interconnectivity, cell infiltration into the DMS, and improved biomechanical properties. Ad-MKX injection into mouse knee joints with experimental OA induced by surgical destabilization of the meniscus suppressed meniscus and cartilage damage, reducing OA severity. Ad-MKX injection into human OA meniscus tissue explants corrected pathogenic gene expression. These results identify MKX as a previously unidentified key transcription factor that regulates the meniscus cell phenotype. The combination of Ad-MKX with TGF-ß3 is effective for differentiation of MSCs to a meniscus cell phenotype and useful for meniscus repair. MKX is a promising therapeutic target for meniscus tissue engineering, repair, and prevention of OA.


Assuntos
Cartilagem Articular , Proteínas de Homeodomínio/metabolismo , Menisco , Células-Tronco Mesenquimais , Osteoartrite , Animais , Proteínas de Homeodomínio/genética , Camundongos , Fenótipo , Fatores de Transcrição
12.
Arthritis Rheum ; 58(9): 2754-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18759300

RESUMO

OBJECTIVE: Notch signaling is implicated in the repression of mesenchymal stem cell (MSC) chondrogenic differentiation. The purpose of this study was to examine the mechanism of this repression and how it is modulated to permit chondrogenesis. METHODS: Notch intracellular domain (NICD) protein levels were monitored via Western blotting throughout chondrogenic differentiation of human MSCs in pellet cultures. Overexpression of Notch signaling components and their effect on chondrogenesis was achieved by transfecting plasmids coding for NICD, HES-1, and HERP-2/HEY-1. COL2A1 and AGGRECAN expression was monitored via quantitative polymerase chain reaction analysis. Chromatin immunoprecipitation (ChIP) was used to test whether HES-1 and HEY-1 bind putative N-box domains in intron 1 of COL2A1. RESULTS: High levels of NICD proteins were reduced during chondrogenesis of human MSCs, and this was mediated by transforming growth factor beta3 (TGFbeta3). COL2A1 gene expression was repressed following overexpression of NICD (2-fold) and HES-1 (3-fold) and was markedly repressed by overexpression of HEY-1 (80-fold). HEY-1 repressed AGGRECAN expression 10-fold, while NICD and HES-1 had no effect. We identified 2 putative N-box domains adjacent to, and part of, the SOX9 enhancer binding site located in intron 1 of COL2A1. ChIP studies showed that endogenous HES-1 and HEY-1 bound to these sites. Transducin-like enhancer, the HES-1 corepressor protein, was displaced during chondrogenic differentiation and following TGFbeta3 treatment. CONCLUSION: These results reveal novel mechanisms by which Notch signaling represses gene expression. Notch signaling proteins act on the SOX9 binding site in the COL2A1 enhancer and prevent SOX9-mediated transcriptional activation of COL2A1 and, thus, chondrogenic differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Condrogênese/fisiologia , Colágeno Tipo II/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Proteína Morfogenética Óssea 6/farmacologia , Carbamatos/farmacologia , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Condrogênese/efeitos dos fármacos , Imunoprecipitação da Cromatina , Dipeptídeos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteínas de Homeodomínio/genética , Humanos , Células-Tronco Mesenquimais , Receptores Notch/genética , Receptores Notch/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Tempo , Fatores de Transcrição HES-1 , Fator de Crescimento Transformador beta3/farmacologia
13.
Tissue Eng Part A ; 24(1-2): 81-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463545

RESUMO

Hydrogel and electrospun scaffold materials support cell attachment and neotissue development and can be tuned to structurally and mechanically resemble native extracellular matrix by altering either electrospun fiber or hydrogel properties. In this study, we examined meniscus tissue generation from different human cell sources including meniscus cells derived from vascular and avascular regions, human bone marrow-derived mesenchymal stem cells, synovial cells, and cells from the infrapatellar fat pad (IPFP). All cells were seeded onto aligned electrospun collagen type I scaffolds and were optionally encapsulated in a tricomponent hydrogel. Single or multilayered constructs were generated and cultivated in defined medium with selected growth factors for 2 weeks. Cell viability, cell morphology, and gene-expression profiles were monitored using confocal microscopy, scanning electron microscopy, and quantitative polymerase chain reaction (qPCR), respectively. Multilayered constructs were examined with histology, immunohistochemistry, qPCR, and for tensile mechanical properties. For all cell types, TGFß1 and TGFß3 treatment increased COL1A1, COMP, Tenascin C (TNC), and Scleraxis (SCX) gene expression and deposition of collagen type I protein. IPFP cells generated meniscus-like tissues with higher meniscogenic gene expression, mechanical properties, and better cell distribution compared to other cell types studied. We show proof of concept that electrospun collagen scaffolds support neotissue formation and IPFP cells have potential for use in cell-based meniscus regeneration strategies.


Assuntos
Colágeno/química , Menisco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Adulto , Contagem de Células , Células Cultivadas , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura
14.
J Orthop Res ; 36(7): 1947-1958, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29411909

RESUMO

Avascular (Avas) meniscus regeneration remains a challenge, which is partly a consequence of our limited knowledge of the cells that maintain this tissue region. In this study, we utilized microarrays to characterize gene expression profiles of intact human Avas meniscus tissue and of cells following culture expansion. Using these data, we examined various 3D culture conditions to redifferentiate Avas cells toward the tissue phenotype. RNA was isolated from either the tissue directly or following cell isolation and 2 weeks in monolayer culture. RNA was hybridized on human genome arrays. Differentially expressed (DE) genes were identified by ranking analysis. DAVID pathway analysis was performed and visualized using STRING analysis. Quantitative PCR (qPCR) on additional donor menisci (tissues and cells) were used to validate array data. Avas cells cultured in 3D were subjected to qPCR to compare with the array-generated data. A total of 387 genes were DE based on differentiation state (>3-fold change; p < 0.01). In Avas-cultured cells, the upregulated pathways included focal adhesion, ECM-receptor interaction, regulation of actin cytoskeleton, and PDGF Signaling. In 3D-cultured Avas cells, TGFß1 or combinations of TGFß1 and BMP6 were most effective to promote an Avas tissue phenotype. THBS2 and THBS4 expression levels were identified as a means to denote meniscus cell phenotype status. We identified the key gene expression profiles, new markers and pathways involved in characterizing the Avas meniscus phenotype in the native state and during in vitro dedifferentiation and redifferentiation. These data served to screen 3D conditions to generate meniscus-like neotissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1947-1958, 2018.


Assuntos
Perfilação da Expressão Gênica , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Engenharia Tecidual/métodos , Citoesqueleto de Actina , Actinas/metabolismo , Adulto , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Feminino , Genoma Humano , Humanos , Masculino , Meniscos Tibiais/anatomia & histologia , Menisco , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Análise Serial de Tecidos , Bancos de Tecidos , Transcriptoma , Adulto Jovem
16.
Tissue Eng Part A ; 22(3-4): 286-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26729061

RESUMO

Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.


Assuntos
Neuritos/metabolismo , Impressão Tridimensional , Células Ganglionares da Retina , Alicerces Teciduais/química , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo
17.
Tissue Eng Part A ; 22(5-6): 436-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26842062

RESUMO

The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.


Assuntos
Colágeno/farmacologia , Menisco/patologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Colágeno/ultraestrutura , Modelos Animais de Doenças , Módulo de Elasticidade/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Fenótipo , Resistência à Tração/efeitos dos fármacos
18.
J Orthop Res ; 33(4): 572-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640671

RESUMO

Meniscus injury and degeneration have been linked to the development of secondary osteoarthritis (OA). Therapies that successfully repair or replace the meniscus are, therefore, likely to prevent or delay OA progression. We investigated the novel approach of building layers of aligned polylactic acid (PLA) electrospun (ES) scaffolds with human meniscus cells embedded in extracellular matrix (ECM) hydrogel to lead to formation of neotissues that resemble meniscus-like tissue. PLA ES scaffolds with randomly oriented or aligned fibers were seeded with human meniscus cells derived from vascular or avascular regions. Cell viability, cell morphology, and gene expression profiles were monitored via confocal microscopy, scanning electron microscopy (SEM), and real-time polymerase chain reaction (PCR), respectively. Seeded scaffolds were used to produce multilayered constructs and were examined via histology and immunohistochemistry. Morphology and mechanical properties of PLA scaffolds (with and without cells) were influenced by fiber direction of the scaffolds. Both PLA scaffolds supported meniscus tissue formation with increased COL1A1, SOX9, and COMP, yet no difference in gene expression was found between random and aligned PLA scaffolds. Overall, ES materials, which possess mechanical strength of meniscus and can support neotissue formation, show potential for use in cell-based meniscus regeneration strategies.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Teste de Materiais/métodos , Meniscos Tibiais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Adulto , Fenômenos Biomecânicos , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Masculino , Meniscos Tibiais/ultraestrutura , Resistência à Tração , Adulto Jovem
19.
Biomaterials ; 25(17): 3681-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15020143

RESUMO

Biological restoration of osteochondral defects requires suitable subchondral support material that also allows the induction of hyaline cartilage tissue. Biphasic implants consisting of pre-fabricated neocartilage and an underlying biodegradable osteoconductive base may meet these requirements. Here we explore various candidate biodegradable support materials onto which neo-cartilage was produced in vitro. Porcine chondrocytes were seeded in a closed and static bioreactor with a base of biomaterial consisting of either poly-L-lactide [P(L)LA], poly-d,l-lactide [P(D,L)LA] or Collagen-hydroxyapatite [Col-HA] and were cultured for 15 weeks. Viable neo-cartilage was produced on each biomaterial with differing amounts of cellular colonisation. P(D,L)LA breakdown was more rapid and uneven among the three biomaterials, leading to constructs of irregular shape. Little or no breakdown or chondrocyte colonisation was evident in P(L)LA. Col-HA constructs were superior in terms of viability, implant morphology and integration between neo-cartilage and biomaterial. These results indicate that our reported system has potential for producing biphasic implants that may be adequate for the repair of osteochondral defects.


Assuntos
Implantes Absorvíveis , Condrócitos/citologia , Condrócitos/fisiologia , Colágeno/química , Durapatita/química , Poliésteres/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Cartilagem Articular/citologia , Cartilagem Articular/crescimento & desenvolvimento , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Sobrevivência Celular , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Teste de Materiais , Membranas Artificiais , Suínos
20.
Tissue Eng Part A ; 20(1-2): 264-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23962090

RESUMO

Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decorin, biglycan, tenascin C (superficial zone), collagen type II, hyaluronan (HA) (middle and deep zones), and osteopontin (deep zone). Uncoated standard culture plates were used as controls. Expanded cells were examined for phenotypic changes using real-time polymerase chain reaction. In addition, expanded cells were placed into high-density pellet cultures for 14 days. Neocartilage formation was assessed via gene expression and histology evaluations. SYSTEM 2: HAC that were cultured on untreated plates and encapsulated in a 3D alginate scaffold were mixed with one of the zone-specific ECM molecules. Cell viability, gene expression, and histology assessments were conducted on 14-day-old tissues. In HAC monolayer culture, exposure to decorin, HA, and osteopontin increased COL2A1 and aggrecan messenger RNA (mRNA) levels compared with controls. Biglycan up-regulated aggrecan without a significant impact on COL2A1 expression; Tenascin C reduced COL2A1 expression. Neocartilage formed after preculture on tenascin C and collagen type II expressed higher COL2A1 mRNA compared with control pellets. Preculture of HAC on HA decreased both COL2A1 and aggrecan expression levels compared with controls, which was consistent with histology. Reduced proteoglycan 4 (PRG4) mRNA levels were observed in HAC pellets that had been precultured with biglycan and collagen type II. Exposing HAC to HA directly in 3D-alginate culture most effectively induced neocartilage formation, showing increased COL2A1 and aggrecan, and reduced COL1A1 compared with controls. Decorin treatments increased HAC COL2A1 mRNA levels. These data indicate that an appropriate exposure to cartilage-specific ECM proteins could be used to enhance cartilage formation and to even induce the formation of zone-specific phenotypes to improve cartilage regeneration.


Assuntos
Cartilagem Articular/metabolismo , Condrogênese , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Adulto , Agrecanas/metabolismo , Alginatos/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Colágeno Tipo II/metabolismo , Matriz Extracelular/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa