Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175109

RESUMO

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

2.
Sci Rep ; 13(1): 14552, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666875

RESUMO

Genetic information is encoded as linear sequences of nucleotides, represented by letters ranging from thousands to billions. Differences between sequences are identified through comparative approaches like sequence analysis, where variations can occur at the individual nucleotide level or collectively due to various phenomena such as recombination or deletion. Detecting these sequence differences is vital for understanding biology and medicine, but the complexity and size of genomic data require substantial classical computing power. Inspired by human visual perception and pixel representation on quantum computers, we leverage these techniques to implement pairwise sequence analysis. Our method utilizes the Flexible Representation of Quantum Images (FRQI) framework, enabling comparisons at a fine granularity to single letters or amino acids within gene sequences. This novel approach enhances accuracy and resolution, surpassing traditional methods by capturing subtle genetic variations with precision. In summary, our approach offers algorithmic advantages, including reduced time complexity, improved space efficiency, and accurate sequence comparisons. The novelty lies in applying the FRQI algorithm to compare quantum images in genome sequencing, allowing for examination at the individual letter or amino acid level. This breakthrough holds promise for advancing biological data analysis and enables a more comprehensive understanding of genetic information.


Assuntos
Algoritmos , Antifibrinolíticos , Humanos , Aminoácidos , Mapeamento Cromossômico , Computadores , Nucleotídeos
3.
Phys Rev E ; 107(2-1): 024113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932510

RESUMO

The emergence of a collective behavior in a many-body system is responsible for the quantum criticality separating different phases of matter. Interacting spin systems in a magnetic field offer a tantalizing opportunity to test different approaches to study quantum phase transitions. In this work, we exploit the new resources offered by quantum algorithms to detect the quantum critical behavior of fully connected spin-1/2 models. We define a suitable Hamiltonian depending on an internal anisotropy parameter γ that allows us to examine three paradigmatic examples of spin models, whose lattice is a fully connected graph. We propose a method based on variational algorithms run on superconducting transmon qubits to detect the critical behavior for systems of finite size. We evaluate the energy gap between the first excited state and the ground state, the magnetization along the easy axis of the system, and the spin-spin correlations. We finally report a discussion about the feasibility of scaling such approach on a real quantum device for a system having a dimension such that classical simulations start requiring significant resources.

4.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38076997

RESUMO

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

5.
Eur Phys J C Part Fields ; 78(8): 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174552

RESUMO

Vector-boson scattering processes are of great importance for the current run-II and future runs of the Large Hadron Collider. The presence of triple and quartic gauge couplings in the process gives access to the gauge sector of the Standard Model (SM) and possible new-physics contributions there. To test any new-physics hypothesis, sound knowledge of the SM contributions is necessary, with a precision which at least matches the experimental uncertainties of existing and forthcoming measurements. In this article we present a detailed study of the vector-boson scattering process with two positively-charged leptons and missing transverse momentum in the final state. In particular, we first carry out a systematic comparison of the various approximations that are usually performed for this kind of process against the complete calculation, at LO and NLO QCD accuracy. Such a study is performed both in the usual fiducial region used by experimental collaborations and in a more inclusive phase space, where the differences among the various approximations lead to more sizeable effects. Afterwards, we turn to predictions matched to parton showers, at LO and NLO: we show that on the one hand, the inclusion of NLO QCD corrections leads to more stable predictions, but on the other hand the details of the matching and of the parton-shower programs cause differences which are considerably larger than those observed at fixed order, even in the experimental fiducial region. We conclude with recommendations for experimental studies of vector-boson scattering processes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa