RESUMO
The atypical protein kinase/ATPase RIO kinase (RIOK)-1 is involved in pre-40S ribosomal subunit production, cell-cycle progression, and protein arginine N-methyltransferase 5 methylosome substrate recruitment. RIOK1 overexpression is a characteristic of several malignancies and is correlated with cancer stage, therapy resistance, poor patient survival, and other prognostic factors. However, its role in prostate cancer (PCa) is unknown. In this study, the expression, regulation, and therapeutic potential of RIOK1 in PCa were examined. RIOK1 mRNA and protein expression were elevated in PCa tissue samples and correlated with proliferative and protein homeostasis-related pathways. RIOK1 was identified as a downstream target gene of the c-myc/E2F transcription factors. Proliferation of PCa cells was significantly reduced with RIOK1 knockdown and overexpression of the dominant-negative RIOK1-D324A mutant. Biochemical inhibition of RIOK1 with toyocamycin led to strong antiproliferative effects in androgen receptor-negative and -positive PCa cell lines with EC50 values of 3.5 to 8.8 nmol/L. Rapid decreases in RIOK1 protein expression and total rRNA content, and a shift in the 28S/18S rRNA ratio, were found with toyocamycin treatment. Apoptosis was induced with toyocamycin treatment at a level similar to that with the chemotherapeutic drug docetaxel used in clinical practice. In summary, the current study indicates that RIOK1 is a part of the MYC oncogene network, and as such, could be considered for future treatment of patients with PCa.
Assuntos
Genes myc , Neoplasias da Próstata , Masculino , Humanos , Proteínas Quinases/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Toiocamicina/farmacologia , Toiocamicina/uso terapêutico , Proliferação de Células , Neoplasias da Próstata/patologia , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Assuntos
Proteína de Ligação a CREB/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteína p300 Associada a E1A/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Ribossômicas/metabolismo , Antagonistas de Androgênios , Benzamidas , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Nitrilas , FeniltioidantoínaRESUMO
BACKGROUND: Prostate cancer (PCa) is one of the most frequently diagnosed tumors in men. In general, therapies for localized PCa are curative. However, treatment of advanced PCa is considered palliative since development of therapy resistance occurs rapidly. It has been shown that tumor-initiating cells are likely involved in therapy resistance. They are not eliminated by conventional therapies and thereby lead to tumor progression and relapse. The aim of this study was to evaluate the effects of the known stem cell inhibitor salinomycin on this critical subpopulation of cells. METHODS: Expression of the cell surface markers CD24 and CD44 was assessed by immunofluorescence and fluorescence-activated cell sorting. Colony formation efficiency and classification of colony types with varying tumor-initiating potential (holoclones, meroclones, and paraclones) were analyzed in an automated way by the newly developed CATCH-colonies software in the absence or presence of salinomycin. RESULTS: Automated high-resolution colony formation analysis consistently identified the various colony types in a broad range of PCa cell lines. Serial clonogenic assays confirmed that holoclones show the highest colony formation potential and maintain their tumor-initiating capacity over multiple rounds. Furthermore, holoclones showed high expression of CD44, while CD24 was not expressed in these clones, thus representing the well-described tumor-initiating CD24- /CD44high population. Salinomycin decreased the CD24- /CD44high population in both docetaxel-sensitive PC3 and docetaxel-resistant (DR) PC3-DR. Moreover, treatment of PC3, DU145, PC3-DR, and DU145-DR with salinomycin led to a significant reduction in the colony formation potential by targeting the colonies with high tumor-initiating potential. CONCLUSIONS: Taken together, we demonstrated that salinomycin specifically targets the tumor-initiating cell population in docetaxel-sensitive and docetaxel-resistant PCa cells and may represent a potential therapeutic approach for the treatment of advanced PCa.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Docetaxel/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Piranos/farmacologia , Antígeno CD24/biossíntese , Linhagem Celular Tumoral , Docetaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Humanos , Receptores de Hialuronatos/biossíntese , Masculino , Células-Tronco Neoplásicas/metabolismo , Células PC-3 , Piranos/administração & dosagemRESUMO
Lung infections with multiresistant pathogens are a major problem among patients suffering from cystic fibrosis (CF). N-Chlorotaurine (NCT), a microbicidal active chlorine compound with no development of resistance, is well tolerated upon inhalation. The aim of this study was to investigate the in vitro bactericidal and fungicidal activity of NCT in artificial sputum medium (ASM), which mimics the composition of CF mucus. The medium was inoculated with bacteria (Staphylococcus aureus, including some methicillin-resistant S. aureus [MRSA] strains, Pseudomonas aeruginosa, and Escherichia coli) or spores of fungi (Aspergillus fumigatus, Aspergillus terreus, Candida albicans, Scedosporium apiospermum, Scedosporium boydii, Lomentospora prolificans, Scedosporium aurantiacum, Scedosporium minutisporum, Exophiala dermatitidis, and Geotrichum sp.), to final concentrations of 107 to 108 CFU/ml. NCT was added at 37°C, and time-kill assays were performed. At a concentration of 1% (10 mg/ml, 55 mM) NCT, bacteria and spores were killed within 10 min and 15 min, respectively, to the detection limit of 102 CFU/ml (reduction of 5 to 6 log10 units). Reductions of 2 log10 units were still achieved with 0.1% (bacteria) and 0.3% (fungi) NCT, largely within 10 to 30 min. Measurements by means of iodometric titration showed oxidizing activity for 1, 30, 60, and >60 min at concentrations of 0.1%, 0.3%, 0.5%, and 1.0% NCT, respectively, which matches the killing test results. NCT demonstrated broad-spectrum microbicidal activity in the milieu of CF mucus at concentrations ideal for clinical use. The microbicidal activity of NCT in ASM was even stronger than that in buffer solution; this was particularly pronounced for fungi. This finding can be explained largely by the formation, through transhalogenation, of monochloramine, which rapidly penetrates pathogens.
Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Escherichia coli/efeitos dos fármacos , Fungos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Taurina/análogos & derivados , Fibrose Cística/microbiologia , Humanos , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Testes de Sensibilidade Microbiana , Esporos Bacterianos/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Taurina/farmacologiaRESUMO
Administration of the microtubule inhibitor docetaxel is a common treatment for metastatic castration-resistant prostate cancer (mCRPC) and results in prolonged patient overall survival. Usually, after a short period of time chemotherapy resistance emerges and there is urgent need to find new therapeutic targets to overcome therapy resistance. The lysine-acetyltransferase p300 has been correlated to prostate cancer (PCa) progression. Here, we aimed to clarify a possible function of p300 in chemotherapy resistance and verify p300 as a target in chemoresistant PCa. Immunohistochemistry staining of tissue samples revealed significantly higher p300 protein expression in patients who received docetaxel as a neoadjuvant therapy compared to control patients. Elevated p300 expression was confirmed by analysis of publicly available patient data, where significantly higher p300 mRNA expression was found in tissue of mCRPC tumors of docetaxel-treated patients. Consistently, docetaxel-resistant PCa cells showed increased p300 protein expression compared to docetaxel-sensitive counterparts. Docetaxel treatment of PCa cells for 72 h resulted in elevated p300 expression. shRNA-mediated p300 knockdown did not alter colony formation efficiency in docetaxel-sensitive cells, but significantly reduced clonogenic potential of docetaxel-resistant cells. Downregulation of p300 in docetaxel-resistant cells also impaired cell migration and invasion. Taken together, we showed that p300 is upregulated by docetaxel, and our findings suggest that p300 is a possible co-target in treatment of chemoresistant PCa.
Assuntos
Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fatores de Transcrição de p300-CBP/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/patologia , Regulação para Cima , Fatores de Transcrição de p300-CBP/análise , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/genéticaRESUMO
IL6/STAT3 signaling is associated with endocrine therapy resistance in prostate cancer, but therapies targeting this pathway in prostate cancer were unsuccessful in clinical trials so far. The mechanistic explanation for this phenomenon is currently unclear; however, IL6 has pleiotropic effects on a number of signaling pathways, including the androgen receptor (AR). Therefore, we investigated IL6-mediated AR activation in prostate cancer cell lines and ex vivo primary prostate tissue cultures in order to gain a better understanding on how to inhibit this process for future clinical trials. IL6 significantly increased androgen-dependent AR activity in LNCaP cells but importantly did not influence AR activity at castrate androgen levels. To identify the underlying mechanism, we investigated several signaling pathways but only found IL6-dependent changes in STAT3 signaling. Biochemical inhibition of STAT3 with the small-molecule inhibitor galiellalactone significantly reduced AR activity in several prostate and breast cancer cell lines. We confirmed the efficacy of galiellalactone in primary tissue slice cultures from radical prostatectomy samples. Galiellalactone significantly reduced the expression of the AR target genes PSA (P < 0.001), TMPRSS2 (P < 0.001), and FKBP5 (P = 0.003) in benign tissue cultures (n = 24). However, a high heterogeneity in the response of the malignant samples was discovered, and only a subset of tissue samples (4 out of 10) had decreased PSA expression upon galiellalactone treatment. Taken together, this finding demonstrates that targeting the IL6/STAT3 pathway with galiellalactone is a viable option to decrease AR activity in prostate tissue that may be applied in a personalized medicine approach.