Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biodegradation ; 35(4): 439-449, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38261083

RESUMO

Most microbiologically influenced corrosion (MIC) studies focus on the threat of pinhole leaks caused by MIC pitting. However, microbes can also lead to structural failures. Tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide mitigated the microbial degradation of mechanical properties of X80 steel pipeline by Desulfovibrio ferrophilus (IS5 strain), a very corrosive sulfate reducing bacterium. It was found that 100 ppm (w/w) THPS added to the enriched artificial seawater (EASW) culture medium before incubation resulted in 2.8-log reduction in sessile cell count after a 7-d incubation at 28 °C under anaerobic conditions, leading to 94% uniform corrosion rate reduction (from 1.3 to 0.07 mm/a), and 84% pitting corrosion rate reduction (from 0.70 to 0.11 mm/a). The X80 dogbone coupon incubated with 100 ppm THPS for 7 d suffered 3% loss in ultimate tensile strain and 0% loss in ultimate tensile strength compared with the abiotic control in EASW. In comparison, the no-treatment X80 dogbone coupon suffered losses of 13% in ultimate tensile strain and 6% in ultimate tensile stress, demonstrating very good THPS efficacy.


Assuntos
Biodegradação Ambiental , Desulfovibrio , Desinfetantes , Aço , Aço/química , Corrosão , Desulfovibrio/metabolismo , Desulfovibrio/efeitos dos fármacos , Desinfetantes/farmacologia , Resistência à Tração , Carbono
2.
Extremophiles ; 26(2): 22, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767155

RESUMO

High metal ion concentrations and low pH cause severely inhibit the activity of an acidophilic microbial consortium (AMC) in bioleaching. This work investigated the effects of exogenous spermine on biofilm formation and the bioleaching efficiency of LiCoO2 by AMC in 9K medium. After the addition of 1 mM spermine, the activities of glutathione peroxidase and catalase increased, while the amount of H2O2, intracellular reactive oxygen species (ROS) and malondialdehyde in AMC decreased. These results indicated that the ability of AMC biofilm to resist oxidative stress introduced by 3.5 g/L Li+ and 30.1 g/L Co2+ was improved by spermine. The activity of glutamate decarboxylase was promoted to restore the intracellular pH buffering ability of AMC. Electrochemical measurements showed that the oxidation rate of pyrite was increased by exogenous spermine. As a result, high bioleaching efficiencies of 97.1% for Li+ and 96.1% for Co2+ from a 5.0% (w v-1) lithium cobalt oxide powder slurry were achieved. This work demonstrated that Tafel polarization can be used to monitor the AMC biofilm's ability of uptaking electrons from pyrite during bioleaching. The corrosion current density increased with 1 mM spermine, indicating enhanced electron uptake by the biofilm from pyrite.


Assuntos
Peróxido de Hidrogênio , Consórcios Microbianos , Ácidos , Lítio , Estresse Oxidativo , Espermina
3.
Bioprocess Biosyst Eng ; 45(4): 659-667, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34982209

RESUMO

Trehalase can biocatalyze the conversion of trehalose to glucose. It is an enzyme that plays an important role in biofilm formation. Thus, trehalase has been patented as a chemical for preventing and treating biofilms. Sulfate-reducing bacteria (SRB) biofilms are often found responsible for biocorrosion, also known as microbiologically infuenced corrosion (MIC), especially in the oil and gas industries and in water utilities. The MIC treatment process typically requires biocide treatment of biofilms, sometimes together with scrubbing. Owing to environmental concerns, a lower biocide dosage is desired in the treatment process. In this work, trehalase was tested as a green biocide enhancer to enhance tetrakis hydroxymethyl phosphonium sulfate (THPS) in the prevention of Desulfovibrio vulgaris MIC of C1018 carbon steel in ATCC 1249 culture medium at 37 °C. THPS is one of the most popular industrial biocides owing to its broad-spectrum efficacy and green chemical status. After 7 days of incubation in 50 mL anaerobic vials containing 40 mL culture medium at pH 7.0, the sessile cell counts indicated that 50 ppm (w/w) THPS + 30 ppm (w/w) trehalase led to an extra 5.7-fold sessile cell reduction when compared with the 50 ppm THPS alone treatment. As a consequence, the combination treatment also resulted in an extra 54% in pit depth reduction and 30% in weight loss reduction when compared with the 50 ppm THPS alone treatment (with 9.0 µm and 1.0 mg/cm2). The biofilm images corroborated the decreased sessile cell count and pitting corrosion.


Assuntos
Desulfovibrio vulgaris , Desinfetantes , Biofilmes , Carbono , Desinfetantes/farmacologia , Aço , Trealase
4.
Bioprocess Biosyst Eng ; 45(4): 669-678, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997847

RESUMO

Microbiologically influenced corrosion (MIC), or microbial biocorrosion, is caused directly by microbial metabolic activities/products or induced by microbial biofilm's damage of a protective film that exposes a solid surface to a pre-existing corrosive environment. MIC causes billions of dollars of losses in various industrial processes, especially in oil and gas and water utilities. The mitigation of problematic industrial microbes typically relies on biocides whose discharges can cause environmental problems. Thus, more effective biocide applications are desired to minimize environmental impact. D-Limonene, a citrus peel oil, generally regarded as safe (GRAS), was used to enhance the popular biodegradable tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide. An oilfield mixed-culture biofilm was grown anaerobically in enriched artificial seawater containing C1018 carbon steel coupons for 7 days at 37 °C. One hundred ppm (w/w) D-limonene reduced general heterotrophic bacteria (GHB) and acid-producing bacteria (APB) effectively, leading to 5.4-log and 6.0-log reductions in sessile GHB and APB cell counts, respectively, compared to no treatment control. The combination of 100 ppm D-limonene + 100 ppm THPS achieved extra 1.0-log SRB, 0.6-log GHB and 0.5-log APB reductions in sessile cell counts, which led to extra 58% reduction in microbial corrosion mass loss (1.2 vs. 0.5 mg/cm2) and extra 30% reductions in maximum pit depth (11.5 vs. 8.1 µm), compared to 100 ppm THPS-only treatment. Linear polarization resistance and potentiodynamic polarization (PDP) corrosion data supported mass loss and pitting data. Mixed-culture biofilms on carbon steel coupons after 7 day incubation at 37 °C showing enhanced biocide treatment outcome using D-limonene + THPS: A no treatment, B 100 ppm D-limonene, C 100 ppm THPS, D 100 ppm D-limonene + 100 ppm THPS.


Assuntos
Desinfetantes , Aço , Biofilmes , Carbono/farmacologia , Desinfetantes/farmacologia , Limoneno/farmacologia , Aço/farmacologia
5.
World J Microbiol Biotechnol ; 37(10): 174, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519903

RESUMO

Microbiologically influenced corrosion (MIC) is one of the major corrosion threats in the oil and gas industry. It is caused by environmental biofilms. Glutaraldehyde is a popular green biocide for mitigating biofilms and MIC. This work investigated the efficacy of glutaraldehyde enhancement by food-grade green chemical D-limonene in the biofilm prevention and MIC mitigation using a mixed-culture oilfield biofilm consortium. After 7 days of incubation at 37 °C in enriched artificial seawater in 125 mL anaerobic vials, the 100 ppm (w/w) glutaraldehyde + 200 ppm D-limonene combination treatment reduced the sessile cell counts on C1018 carbon steel coupons by 2.1-log, 1.7-log, and 2.3-log for sulfate reducing bacteria, acid producing bacteria, and general heterotrophic bacteria, respectively in comparison with the untreated control. The treatment achieved 68% weight loss reduction and 78% pit depth reduction. The 100 ppm glutaraldehyde + 200 ppm D-limonene combination treatment was found more effective in biofilm prevention and MIC mitigation than glutaraldehyde and D-limonene used individually. Electrochemical tests corroborated weight loss and pit depth data trends.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Glutaral/farmacologia , Limoneno/farmacologia , Aço/química , Bactérias/crescimento & desenvolvimento , Corrosão , Campos de Petróleo e Gás , Água do Mar/microbiologia
6.
Extremophiles ; 24(4): 485-499, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32322992

RESUMO

During bioleaching of Cobalt from waste lithium-ion batteries, the biooxidation activity of acidophilic bacteria is inhibited by a high concentration of Co ion in the liquid phase. However, the mechanism for Co2+ toxicity to acidophilic bacteria has not been fully elucidated. In this study, the effects of Co2+ concentration on the biooxidation activity for Fe2+, intracellular reactive oxygen species (ROS) level and antioxidant defense systems in a mixed-culture of acidophilic bacteria (MCAB) were investigated. The results showed that the biooxidation activity of the MCAB was inhibited by Co2+. Furthermore, it was indicated that the intracellular ROS contents of the MCAB under conditions of 0.4 M and 0.6 M Co2+ were 2.60 and 3.34 times higher than that under the condition of 0 M Co2+. The increase in intracellular malondialdehyde content indicated that the oxidative damage was induced by Co2+. Moreover, the antioxidant systems in MCAB were affected by Co2+. It was observed that the Co2+ exposure increased the catalase and glutathione peroxidase activities while reducing the superoxide dismutase activity and the intracellular glutathione (GSH) content. It was found that an exogenous GSH supplementation eliminated excess intracellular ROS and improved the biooxidation activity of the MCAB.


Assuntos
Estresse Oxidativo , Antioxidantes , Bactérias , Catalase , Glutationa , Superóxido Dismutase
7.
Biofouling ; 31(6): 481-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26194639

RESUMO

The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 µm vs 9.50 µm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.


Assuntos
Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Aço Inoxidável/química , Aço Inoxidável/normas , Antibacterianos/farmacologia , Cobre/efeitos adversos , Cobre/análise , Corrosão , Microscopia de Fluorescência
8.
Biotechnol Lett ; 37(12): 2357-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272393

RESUMO

Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais/métodos , Biotecnologia/métodos
9.
Bioelectrochemistry ; 159: 108731, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38759479

RESUMO

Carbon steel microbiologically influenced corrosion (MIC) by sulfate reducing bacteria (SRB) is known to occur via extracellular electron transfer (EET). A higher biofilm sessile cell count leads to more electrons being harvested for sulfate reduction by SRB in energy production. Metal surface roughness can impact the severity of MIC by SRB because of varied biofilm attachment. C1018 carbon steel coupons (1.2 cm2 top working surface) polished to 36 grit (4.06 µm roughness which is relatively rough) and 600 grit (0.13 µm) were incubated in enriched artificial seawater inoculated with highly corrosive Desulfovibrio ferrophilus IS5 at 28 â„ƒ for 7 d and 30 d. It was found that after 7 d of SRB incubation, 36 grit coupons had a 11% higher sessile cell count at (2.0 ± 0.17) × 108 cells/cm2, 52% higher weight loss at 22.4 ± 5.9 mg/cm2 (1.48 ± 0.39 mm/a uniform corrosion rate), and 18% higher maximum pit depth at 53 µm compared with 600 grit coupons. However, after 30 d, the differences diminished. Electrochemical tests with transient information supported the weight loss data trends. This work suggests that a rougher surface facilitates initial biofilm establishment but provides no long-term advantage for increased biofilm growth.


Assuntos
Biofilmes , Carbono , Desulfovibrio , Aço , Propriedades de Superfície , Corrosão , Aço/química , Desulfovibrio/metabolismo , Desulfovibrio/fisiologia , Carbono/química , Carbono/metabolismo , Elétrons , Transporte de Elétrons , Sulfatos/metabolismo , Sulfatos/química
10.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
11.
Microbiol Spectr ; 12(6): e0400523, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38709045

RESUMO

Clostridioides difficile infection (CDI) with high morbidity and high mortality is an urgent threat to public health, and C. difficile pathogenesis studies are eagerly required for CDI therapy. The major surface layer protein, SlpA, was supposed to play a key role in C. difficile pathogenesis; however, a lack of isogenic slpA mutants has greatly hampered analysis of SlpA functions. In this study, the whole slpA gene was successfully deleted for the first time via CRISPR-Cas9 system. Deletion of slpA in C. difficile resulted in smaller, smother-edged colonies, shorter bacterial cell size, and aggregation in suspension. For life cycle, the mutant demonstrated lower growth (changes of optical density at 600 nm, OD600) but higher cell density (colony-forming unit, CFU), decreased toxins production, and inhibited sporulation. Moreover, the mutant was more impaired in motility, more sensitive to vancomycin and Triton X-100-induced autolysis, releasing more lactate dehydrogenase. In addition, SlpA deficiency led to robust biofilm formation but weak adhesion to human host cells.IMPORTANCEClostridioides difficile infection (CDI) has been the most common hospital-acquired infection, with a high rate of antibiotic resistance and recurrence incidences, become a debilitating public health threat. It is urgently needed to study C. difficile pathogenesis for developing efficient strategies as CDI therapy. SlpA was indicated to play a key role in C. difficile pathogenesis. However, analysis of SlpA functions was hampered due to lack of isogenic slpA mutants. Surprisingly, the first slpA deletion C. difficile strain was generated in this study via CRISPR-Cas9, further negating the previous thought about slpA being essential. Results in this study will provide direct proof for roles of SlpA in C. difficile pathogenesis, which will facilitate future investigations for new targets as vaccines, new therapeutic agents, and intervention strategies in combating CDI.


Assuntos
Proteínas de Bactérias , Biofilmes , Clostridioides difficile , Infecções por Clostridium , Deleção de Genes , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Clostridium/microbiologia , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Virulência/genética , Sistemas CRISPR-Cas , Aderência Bacteriana/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
12.
J Hazard Mater ; 474: 134764, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824773

RESUMO

Metal ions stress will inhibit the oxidation capacity of iron and sulfur of an acidophilic microbial consortium (AMC), which leads to reduced bioleaching efficiency. This work explored the impacts of Li+ and Co2+ on the composition and function of AMC biofilms with a multi-scale approach. At the reactor scale, the results indicated that the oxidative activity, the adsorption capacity, and the biofilm formation ability of AMC on pyrite surfaces decreased under 500 mM Li+ and 500 mM Co2+. At the biofilm scale, the electrochemical measurements showed that Li+ and Co2+ inhibited the charge transfer between the pyrite working electrode and the biofilm, and decreased the corrosion current density of the pyrite working electrode. At the cell scale, the content of proteins in extracellular polymers substrate (EPS) increased as the concentrations of metal ions increased. Moreover, the adsorption capacity of EPS for Li+ and Co2+ increased. At the microbial consortium scale, a BugBase phenotype analysis showed that under 500 mM Li+ and 500 mM Co2+, the antioxidant stress capacity and the content of mobile gene elements in AMC increased. The results in this work can provide useful data and theoretical support for the regulation strategy of the bioleaching of spent lithium-ion batteries to recover valuable metals.


Assuntos
Biofilmes , Cobalto , Lítio , Consórcios Microbianos , Biofilmes/efeitos dos fármacos , Cobalto/química , Cobalto/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Ferro/química , Ferro/metabolismo , Adsorção , Sulfetos/química , Eletrodos , Oxirredução
13.
Biosens Bioelectron ; 261: 116521, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917514

RESUMO

Oceanic facilities and equipment corrosion present considerable economic and safety concerns, predominantly due to microbial corrosion. Early detection of corrosive microbes is pivotal for effective monitoring and prevention. Yet, traditional detection methods often lack specificity, require extensive processing time, and yield inaccurate results. Hence, the need for an efficient real-time corrosive microbe monitoring technology is evident. Pseudomonas aeruginosa, a widely distributed microorganism in aquatic environments, utilizes its production of quinone-like compounds, specifically pyocyanin (PYO), to corrode metals. Here, we report a novel fiber optic surface plasmon resonance (SPR) sensor modified by the C-terminal of BrlR protein (BrlR-C), which is a specific receptor of PYO molecule, to detect P. aeruginosa in aquatic environments. The results showed that the sensor had a good ability to recognize PYO in the concentration range of 0-1 µg/mL, and showed excellent sensing performance in real-time monitoring the growth status of P. aeruginosa. With a strong selectivity of PYO, the sensor could clearly detect P. aeruginosa against other bacteria in seawater environment, and exhibited excellent anti-interference ability against variations in pH, temperature and pressure and other interfering substances. This study provides a useful tool for monitoring corrosive P. aeruginosa biofilm in aquatic environments, which is a first of its kind example that serves as a laboratory model for the application of fiber optic technology in real-world scenarios to monitoring biofilms in microbial corrosion and biofouling.


Assuntos
Biofilmes , Técnicas Biossensoriais , Tecnologia de Fibra Óptica , Pseudomonas aeruginosa , Piocianina , Ressonância de Plasmônio de Superfície , Pseudomonas aeruginosa/isolamento & purificação , Ressonância de Plasmônio de Superfície/métodos , Piocianina/análise , Piocianina/química , Técnicas Biossensoriais/métodos , Corrosão , Fibras Ópticas , Água do Mar/microbiologia , Água do Mar/química , Desenho de Equipamento
14.
Environ Technol ; 34(13-16): 1735-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350431

RESUMO

Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.


Assuntos
Biocombustíveis , Biomassa , Dióxido de Carbono/química , Celulose/metabolismo , Etanol/química , Etanol/metabolismo , Líquidos Iônicos/química , Lignina/química , Plantas/química , Biotecnologia/métodos , Carboidratos/química , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Celulose/química , Cromatografia com Fluido Supercrítico , Etanol/análise , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo , Temperatura
15.
Environ Technol ; 34(13-16): 1915-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350445

RESUMO

Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated.


Assuntos
Fontes de Energia Bioelétrica , Biocombustíveis , Eletrólise , Biofilmes , Eletrodos , Etanol/química , Hidrogênio/química , Metano/química , Poli-Hidroxialcanoatos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
16.
Bioelectrochemistry ; 154: 108508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37451042

RESUMO

Pseudomonas aeruginosa is a facultative bacterium that is pathogenic. It is ubiquitous in the environment including air handling systems. It causes microbiologically influenced corrosion (MIC) aerobically and anaerobically. In this work, P. aeruginosa was grown as a nitrate reducing bacterium (NRB) in Luria-Bertani medium with KNO3 at 37 °C. Trehalase, an enzyme which plays a crucial role in biofilm formation was found to enhance the treatment of P. aeruginosa biofilm and its MIC against galvanized steel by tetrakis-hydroxymethyl phosphonium sulfate (THPS) green biocide. After a 7-d incubation, 30 ppm (w/w) trehalase reduced sessile cell count by 0.8-log, and it also reduced galvanized steel weight loss by 14%, compared to 2.3-log and 39%, respectively for the 30 ppm THPS treatment. The combination of 30 ppm THPS + 30 ppm trehalase reduced sessile cell count further by 0.1-log and weight loss by 13% compared to using THPS alone. Electrochemical corrosion measurements supported weight loss results. The injection of 20 ppm riboflavin into a 3-d P. aeruginosa broth failed to accelerate the corrosion rate, suggesting that nitrate reducing P. aeruginosa MIC of galvanized steel did not belong to extracellular electron transfer-MIC, because Zn was hydrolyzed after the microbe damaged the passive film.


Assuntos
Desinfetantes , Aço , Pseudomonas aeruginosa , Trealase , Nitratos , Biofilmes , Corrosão
17.
Nat Rev Microbiol ; 21(11): 705-718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37344552

RESUMO

A wide diversity of microorganisms, typically growing as biofilms, has been implicated in corrosion, a multi-trillion dollar a year problem. Aerobic microorganisms establish conditions that promote metal corrosion, but most corrosion has been attributed to anaerobes. Microbially produced organic acids, sulfide and extracellular hydrogenases can accelerate metallic iron (Fe0) oxidation coupled to hydrogen (H2) production, as can respiratory anaerobes consuming H2 as an electron donor. Some bacteria and archaea directly accept electrons from Fe0 to support anaerobic respiration, often with c-type cytochromes as the apparent outer-surface electrical contact with the metal. Functional genetic studies are beginning to define corrosion mechanisms more rigorously. Omics studies are revealing which microorganisms are associated with corrosion, but new strategies for recovering corrosive microorganisms in culture are required to evaluate corrosive capabilities and mechanisms. Interdisciplinary studies of the interactions among microorganisms and between microorganisms and metals in corrosive biofilms show promise for developing new technologies to detect and prevent corrosion. In this Review, we explore the role of microorganisms in metal corrosion and discuss potential ways to mitigate it.


Assuntos
Cáusticos , Corrosão , Bactérias , Oxirredução , Archaea , Bactérias Anaeróbias , Biofilmes
18.
Antibiotics (Basel) ; 12(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37508290

RESUMO

MIC (microbiologically influenced corrosion) is problematic in many industries, especially in the oil and gas industry. In this work, N80 carbon steel for pipelines was tested with 26Cr3Mo chromium pipeline steel for comparison in SRB (sulfate-reducing bacterium) MIC mitigation using a THPS (tetrakis hydroxymethyl phosphonium sulfate)-based commercial biocide (Biotreat 5475 with 75-80% THPS by mass). Peptide A, a nature-mimicking synthetic cyclic peptide (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with biofilm dispersal ability was used as a biocide enhancer. Metal coupons covered with 3-d old Desulfovibrio ferrophilus IS5 biofilms were immersed in different biocide solutions. After 1-h treatment, 200 ppm Biotreat 5475, 200 ppm Biotreat 5475 + 200 nM (360 ppb) Peptide A, and 400 ppm Biotreat 5475 achieved 0.5-log, 1.7-log and 1.9-log reductions in sessile cell count on N80, and 0.7-log, 1.7-log, and 1.8-log on 26Cr3Mo, respectively. The addition of 200 nM Peptide A cut the THPS biocide dosage by nearly half. Biocide injection tests in electrochemical glass cells after 1 h exhibited 15%, 70%, and 72% corrosion inhibition efficiency (based on corrosion current density) on N80, and 27%, 79%, 75% on 26Cr3Mo, respectively. Linear polarization resistance and electrochemical impedance spectrometry results also indicated antimicrobial efficacies.

19.
Bioelectrochemistry ; 150: 108367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621048

RESUMO

Stainless steels (SS) are not immune to microbiologically influenced corrosion (MIC) especially in the presence of sulfate reducing bacteria (SRB). It is necessary to study the influence of alloying elements on the MIC. SRB MIC behaviors of four stainless steels (2205 SS, 316L SS, 304 SS, and 410 SS), with different alloying element compositions were compared after 14 days of incubation at 37°C in enriched artificial seawater inoculated with Desulfovibrio sp. The sessile cell sequence was 410 SS > 316L SS > 304 SS > 2205 SS, inversely proportional to Cr content. The uniform corrosion rate (based on weight loss) sequence was 410 SS > 304 SS > 316L SS > 2205 SS, which matches the pitting resistance equivalent number (PREN) sequence inversely. 410 SS with the lowest Cr and Mo contents suffered the most severe pitting, with pit depth of 35 µm and weight loss of 0.75 mg/cm2 (0.91 mm/a pitting rate and 25 µm/a uniform corrosion rate). The other three stainless steels with higher Cr and Mo contents suffered only metastable pits. The semiconductor characteristics and the re-passivation abilities of the passive films were found to be affected by Cr and Mo contents.


Assuntos
Desulfovibrio , Aço , Aço Inoxidável , Ligas , Corrosão , Anaerobiose , Água do Mar
20.
J Hazard Mater ; 443(Pt B): 130245, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332278

RESUMO

Bioleaching is intensively investigated for recovering valuable metals such as Li, Co, Ni and Cu. Nickel ion stress threatens the health of microorganisms when Ni2+ starts to accumulate in the leachate during the bioleaching of materials that are rich in Ni, such as spent lithium-ion batteries. The possible mechanisms underlying the response of S. thermosulfidooxidans to nickel ion stress were analyzed using a multi-scale approach. Under the condition of nickel ion stress, high concentrations of nickel ions were immobilized by extracellular polymeric substances, while concentrations of nickel ions inside the cells remained low. The intracellular adenosine triphosphate (ATP) concentration and H+-ATPase activity increased to maintain normal cell growth and metabolic activities. Scavenging abilities of S. thermosulfidooxidans for hydrogen peroxide and superoxide anion were enhanced to reduce oxidative damage induced by nickel ion stress. There were 734 differentially expressed genes identified by RNA-seq under nickel ion stress. Most of them were involved in oxidative phosphorylation, glutathione metabolism and genetic information processing, responsible for intracellular energy utilization, intracellular antioxidant capacity and DNA damage repair, respectively. The results of this study are of major significance for in-depth understanding of the mechanisms of acidophilic microorganisms' resistance to metal ions.


Assuntos
Lítio , Níquel , Níquel/toxicidade , Fontes de Energia Elétrica , Íons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa