Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Med Virol ; 94(9): 4393-4405, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35560068

RESUMO

A new series of butene lactone derivatives were designed according to an influenza neuraminidase target and their antiviral activities against H1N1 infection of Madin-Darby canine kidney cells were evaluated. Among them, a compound that was given the name M355 was identified as the most potent against H1N1 (EC50 = 14.7 µM) with low toxicity (CC50 = 538.13 µM). It also visibly reduced the virus-induced cytopathic effect. Time-of-addition analysis indicated that H1N1 was mostly suppressed by M355 at the late stage of its infectious cycle. M355 inhibited neuraminidase in a dose-dependent fashion to a similar extent as oseltamivir, which was also indicated by a computer modeling experiment. In a mouse model, lung lesions and virus load were reduced and the expression of nucleoprotein was moderated by M355. The enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction analyses revealed that the levels of interferon-γ, interferon regulatory factor-3, Toll-like receptor-3, tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and IL-8 were downregulated in the M355-treated groups, whereas the levels of IL-10 and IL-13 were upregulated. Similarly, IgG was found to be increased in infected mice plasma. These results demonstrate that M355 inhibit the expression of H1N1 in both cellular and animal models. Thus, M355 has the potential to be effective in the treatment of influenza A virus infection.


Assuntos
Alcenos , Antivirais , Vírus da Influenza A Subtipo H1N1 , Lactonas , Infecções por Orthomyxoviridae , Alcenos/farmacologia , Animais , Antivirais/farmacologia , Cães , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Lactonas/farmacologia , Células Madin Darby de Rim Canino , Camundongos , Neuraminidase , Infecções por Orthomyxoviridae/tratamento farmacológico
2.
J Med Virol ; 93(6): 3428-3438, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33064304

RESUMO

Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections and there are currently no safer or more effective drugs available. It is important to find novel medications for RSV infection. A series of steroidal pyridines were synthesized for screening and evaluation of their antiviral activity and investigation of their antiviral mechanism of action. Compound 3l had the highest antiviral activity, with a half-maximal effective concentration (EC50 ) of 3.13 µM. Compound 3l was explored for its effects in vitro on RSV 2 h before infection (pretreatment), at the time of infection (competition), and 2 h after infection (postinfection). Toll-like receptor (TLR)-3, retinoic acid-inducible gene (RIG)-I, interleukin (IL)-6, and interferon (IFN)-ß were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound 3l. Decreased expression of TLR-3, RIG-I, IL-6, IFN-ß, and IL-10 was also found in vivo. The results indicated that compound 3l exerted its antiviral effects mainly through inhibition of viral replication and downregulation of inflammatory factors.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Citocinas/análise , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Interferons/genética , Interferons/imunologia , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Piridinas/química , Organismos Livres de Patógenos Específicos
3.
Sci Adv ; 9(24): eadf4098, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315148

RESUMO

Viral infections continue to threaten human health. It remains a major challenge to efficiently inhibit viral infection while avoiding secondary injury. Here, we designed a multifunctional nanoplatform (termed as ODCM), prepared by oseltamivir phosphate (OP)-loaded polydopamine (PDA) nanoparticles camouflaged by the macrophage cell membrane (CM). OP can be efficiently loaded onto the PDA nanoparticles through the π-π stacking and hydrogen bonding interactions with a high drug-loading rate of 37.6%. In particular, the biomimetic nanoparticles can accumulate actively in the damaged lung model of viral infection. At the infection site, PDA nanoparticles can consume excess reactive oxygen species and be simultaneously oxidized and degraded to achieve controlled release of OP. This system exhibits enhanced delivery efficiency, inflammatory storm suppression, and viral replication inhibition. Therefore, the system exerts outstanding therapeutic effects while improving pulmonary edema and protecting lung injury in a mouse model of influenza A virus infection.


Assuntos
Antivirais , Nanomedicina , Humanos , Animais , Camundongos , Antivirais/farmacologia , Oseltamivir , Indóis/farmacologia
4.
Eur J Med Chem ; 232: 114189, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35196598

RESUMO

Influenza is a century-old disease that continues to baffle humans by its frequently changing nature, seasonal epidemics, and occasional pandemics. Approximately 9% of the world's population is infected by the influenza virus annually. The emergence of novel strains because of rapid mutations as well as interspecies disease contamination, limits the efficiency of strain-specific vaccines. Anti-influenza drugs such as neuraminidase inhibitors, M2 ion channel inhibitors, etc. have become the first line of defense in prophylaxis and early containment of the disease. But the growing drug resistance due to drug-induced selective pressure has also limited the efficacy of those drugs. Because we can't predict the next strain types, their virulence, or the severity of the next epidemic/pandemic caused by influenza virus, we ought to gear up for the development of novel anti-influenza drugs with a broad spectrum of reactivity against all strains and subtypes, better bioavailability, easier administrative pathways, and lesser adverse effects. Various new compounds with each having significantly different target molecules and pharmacologic activity have shown potential against influenza virus strains in laboratory situations as well as clinical trials. We should also consider combination therapy to boost the efficacy of existing drugs. This review is aiming to succinctly document the recent signs of progress regarding anti-influenza drugs both in the market and under investigation.


Assuntos
Influenza Humana , Orthomyxoviridae , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Neuraminidase
5.
Viruses ; 13(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670217

RESUMO

Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.


Assuntos
4-Butirolactona/análogos & derivados , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Lactonas/química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Células A549 , Animais , Antivirais/química , Linhagem Celular , Citocinas/efeitos dos fármacos , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Lactonas/farmacologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C
6.
Nat Phys ; 16(1): 101-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32905405

RESUMO

Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Using a multicellular mammary cancer organoid model, here we map in three dimensions the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa