Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(11): 1580-1591, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199076

RESUMO

The ubiquitin-proteasome system (UPS) plays an important role in maintaining cellular homeostasis by degrading a multitude of key regulatory proteins. FBXW11, also known as b-TrCP2, belongs to the F-box family, which targets the proteins to be degraded by UPS. Transcription factors or proteins associated with cell cycle can be modulated by FBXW11, which may stimulate or inhibit cellular proliferation. Although FBXW11 has been investigated in embryogenesis and cancer, its expression has not been evaluated in osteogenic cells. With the aim to explore FBXW11gene expression modulation in the osteogenic lineage we performed molecular investigations in mesenchymal stem cells (MSCs) and osteogenic cells in normal and pathological conditions. In vitro experiments as well as ex vivo investigations have been performed. In particular, we explored the FBXW11 expression in normal osteogenic cells as well as in cells of cleidocranial dysplasia (CCD) patients or osteosarcoma cells. Our data showed that FBXW11 expression is modulated during osteogenesis and overexpressed in circulating MSCs and in osteogenically stimulated cells of CCD patients. In addition, FBXW11 is post-transcriptionally regulated in osteosarcoma cells leading to increased levels of beta-catenin. In conclusion, our findings show the modulation of FBXW11 in osteogenic lineage and its dysregulation in impaired osteogenic cells.


Assuntos
Osteogênese , Osteossarcoma , Ubiquitina-Proteína Ligases , Proteínas Contendo Repetições de beta-Transducina , Humanos , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Osteogênese/genética , Osteossarcoma/genética , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
EMBO J ; 38(20): e101430, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31475738

RESUMO

E2F7 and E2F8 act as tumor suppressors via transcriptional repression of genes involved in S-phase entry and progression. Previously, we demonstrated that these atypical E2Fs are degraded by APC/CCdh1 during G1 phase of the cell cycle. However, the mechanism driving the downregulation of atypical E2Fs during G2 phase is unknown. Here, we show that E2F7 is targeted for degradation by the E3 ubiquitin ligase SCFcyclin F during G2. Cyclin F binds via its cyclin domain to a conserved C-terminal CY motif on E2F7. An E2F7 mutant unable to interact with SCFcyclin F remains stable during G2. Furthermore, SCFcyclin F can also interact and induce degradation of E2F8. However, this does not require the cyclin domain of SCFcyclin F nor the CY motifs in the C-terminus of E2F8, implying a different regulatory mechanism than for E2F7. Importantly, depletion of cyclin F causes an atypical-E2F-dependent delay of the G2/M transition, accompanied by reduced expression of E2F target genes involved in DNA repair. Live cell imaging of DNA damage revealed that cyclin F-dependent regulation of atypical E2Fs is critical for efficient DNA repair and cell cycle progression.


Assuntos
Ciclinas/metabolismo , Reparo do DNA , Fator de Transcrição E2F7/metabolismo , Fase G2/fisiologia , Proteólise , Proteínas Repressoras/metabolismo , Pontos de Checagem do Ciclo Celular , Ciclinas/genética , Dano ao DNA , Replicação do DNA , Fator de Transcrição E2F7/genética , Células HeLa , Humanos , Ligação Proteica , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Cell ; 134(2): 256-67, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662541

RESUMO

In response to DNA damage in G2, mammalian cells must avoid entry into mitosis and instead initiate DNA repair. Here, we show that, in response to genotoxic stress in G2, the phosphatase Cdc14B translocates from the nucleolus to the nucleoplasm and induces the activation of the ubiquitin ligase APC/C(Cdh1), with the consequent degradation of Plk1, a prominent mitotic kinase. This process induces the stabilization of Claspin, an activator of the DNA-damage checkpoint, and Wee1, an inhibitor of cell-cycle progression, and allows an efficient G2 checkpoint. As a by-product of APC/C(Cdh1) reactivation in DNA-damaged G2 cells, Claspin, which we show to be an APC/C(Cdh1) substrate in G1, is targeted for degradation. However, this process is counteracted by the deubiquitylating enzyme Usp28 to permit Claspin-mediated activation of Chk1 in response to DNA damage. These findings define a novel pathway that is crucial for the G2 DNA-damage-response checkpoint.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Fosfatases de Especificidade Dupla/metabolismo , Fase G2 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Humanos , Mitose , Neoplasias/metabolismo , Ubiquitina Tiolesterase/metabolismo , Quinase 1 Polo-Like
4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629161

RESUMO

Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.


Assuntos
Proteínas de Membrana , Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Autofagia/genética , Macroautofagia , Proteínas de Membrana/metabolismo , Ubiquitina , Ubiquitinação
5.
Chemistry ; 28(33): e202200200, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35394095

RESUMO

The chiral cationic complex [Ru(η1 -OAc)(CO)((R,R)-Skewphos)(phen)]OAc (2R ), isolated from reaction of [Ru(η1 -OAc)(η2 -OAc)(R,R)-Skewphos)(CO)] (1R ) with phen, reacts with NaOPiv and KSAc affording [RuX(CO)((R,R)-Skewphos)(phen)]Y (X=Y=OPiv 3R ; X=SAc, Y=OAc 4R ). The corresponding enantiomers 2S -4S have been obtained from 1S containing (S,S)-Skewphos. Reaction of 2R and 2S with (S)-cysteine and NaPF6 at pH=9 gives the diastereoisomers [Ru((S)-Cys)(CO)(PP)(phen)]PF6 (PP=(R,R)-Skewphos 2R -Cys; (S,S)-Skewphos 2S -Cys). The DFT energetic profile for 2R with (S)-cysteine in H2 O indicates that aquo and hydroxo species are involved in formation of 2R -Cys. The stability of the ruthenium complexes in 0.9 % w/v NaCl solution, PBS and complete DMEM medium, as well as their n-octanol/water partition coefficient (logP), have been evaluated. The chiral complexes show high cytotoxic activity against SW1736, 8505 C, HCT-116 and A549 cell lines with EC50 values of 2.8-0.04 µM. The (R,R)-Skewphos derivatives show higher cytotoxicity compared to their enantiomers, 4R (EC50 =0.04 µM) being 14 times more cytotoxic than 4S against the anaplastic thyroid cancer 8505 C cell line.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Antineoplásicos/farmacologia , Cátions , Linhagem Celular Tumoral , Complexos de Coordenação/toxicidade , Cisteína , Estereoisomerismo
6.
BMC Biol ; 18(1): 75, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600317

RESUMO

BACKGROUND: Lymphocytes circulate between peripheral lymphoid tissues via blood and lymphatic systems, and chemokine-induced migration is important in trafficking lymphocytes to distant sites. The small GTPase Rap1 is important in mediating lymphocyte motility, and Rap1-GEFs are involved in chemokine-mediated Rap1 activation. Here, we describe the roles and mechanisms of Rap1-GEFs in lymphocyte trafficking. RESULTS: In this study, we show that RA-GEF-1 and 2 (also known as Rapgef2 and 6) are key guanine nucleotide exchange factors (GEF) for Rap1 in lymphocyte trafficking. Mice harboring T cell-specific knockouts of Rapgef2/6 demonstrate defective homing and egress of T cells. Sphingosine-1-phosphate (S1P) as well as chemokines activates Rap1 in a RA-GEF-1/2-dependent manner, and their deficiency in T cells impairs Mst1 phosphorylation, cell polarization, and chemotaxis toward S1P gradient. On the other hand, B cell-specific knockouts of Rapgef2/6 impair chemokine-dependent retention of B cells in the bone marrow and passively facilitate egress. Phospholipase D2-dependent production of phosphatidic acid by these chemotactic factors determines spatial distribution of Rap1-GTP subsequent to membrane localization of RA-GEFs and induces the development of front membrane. On the other hand, basal de-phosphorylation of RA-GEFs is necessary for chemotactic factor-dependent increase in GEF activity for Rap1. CONCLUSIONS: We demonstrate here that subcellular distribution and activation of RA-GEFs are key factors for a directional movement of lymphocytes and that phosphatidic acid is critical for membrane translocation of RA-GEFs with chemokine stimulation.


Assuntos
Movimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Linfócitos/fisiologia , Ácidos Fosfatídicos/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Fosforilação
7.
Nature ; 476(7360): 293-7, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21727895

RESUMO

The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Trombospondinas/metabolismo , Proteínas Wnt/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores Frizzled/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Regeneração , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
8.
Mol Cell ; 33(1): 109-16, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19150432

RESUMO

The BimEL tumor suppressor is a potent proapoptotic BH3-only protein. We found that, in response to survival signals, BimEL was rapidly phosphorylated on three serine residues in a conserved degron, facilitating binding and degradation via the F box protein betaTrCP. Phosphorylation of the BimEL degron was executed by Rsk1/2 and promoted by the Erk1/2-mediated phosphorylation of BimEL on Ser69. Compared to wild-type BimEL, a BimEL phosphorylation mutant unable to bind betaTrCP was stabilized and consequently potent at inducing apoptosis by the intrinsic mitochondrial pathway. Moreover, although non-small cell lung cancer (NSCLC) cells often become resistant to gefitinib (a clinically relevant tyrosine kinase inhibitor that induces apoptosis through BimEL), silencing of either betaTrCP or Rsk1/2 resulted in BimEL-mediated apoptosis of both gefitinib-sensitive and gefitinib-insensitive NSCLC cells. Our findings reveal that betaTrCP promotes cell survival in cooperation with the ERK-RSK pathway by targeting BimEL for degradation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Humanos , Camundongos , Estabilidade Proteica
9.
J Biol Chem ; 289(40): 27400-9, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25124033

RESUMO

Tiam1 (T-cell lymphoma invasion and metastasis 1) is a guanine nucleotide exchange factor that specifically controls the activity of the small GTPase Rac, a key regulator of cell adhesion, proliferation, and survival. Here, we report that in response to mitogens, Tiam1 is degraded by the ubiquitin-proteasome system via the SCF(ßTrCP) ubiquitin ligase. Mitogenic stimulation triggers the binding of Tiam1 to the F-box protein ßTrCP via its degron sequence and subsequent Tiam1 ubiquitylation and proteasomal degradation. The proteolysis of Tiam1 is prevented by ßTrCP silencing, inhibition of CK1 and MEK, or mutation of the Tiam1 degron site. Expression of a stable Tiam1 mutant that is unable to interact with ßTrCP results in sustained activation of the mTOR/S6K signaling and increased apoptotic cell death. We propose that the SCF(ßTrCP)-mediated degradation of Tiam1 controls the duration of the mTOR-S6K signaling pathway in response to mitogenic stimuli.


Assuntos
Caseína Quinase I/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Caseína Quinase I/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fosforilação , Ligação Proteica , Proteólise , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Serina-Treonina Quinases TOR/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo
10.
J Biol Chem ; 289(11): 7730-7, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24500709

RESUMO

TFAP4, a basic helix-loop-helix transcription factor that regulates the expression of a multitude of genes involved in the regulation of cellular proliferation, stemness, and epithelial-mesenchymal transition, is up-regulated in colorectal cancer and a number of other human malignancies. We have found that, during the G2 phase of the cell division cycle, TFAP4 is targeted for proteasome-dependent degradation by the SCF(ßTrCP) ubiquitin ligase. This event requires phosphorylation of TFAP4 on a conserved degron. Expression of a stable TFAP4 mutant unable to interact with ßTrCP results in a number of mitotic defects, including chromosome missegregation and multipolar spindles, which eventually lead to the activation of the DNA damage response. Our findings reveal that ßTrCP-dependent degradation of TFAP4 is required for the fidelity of mitotic division.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mitose , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal , Fase G2 , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Mutação , Fosforilação , Plasmídeos/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Fatores de Transcrição/genética
11.
PLoS Pathog ; 9(5): e1003384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717208

RESUMO

Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying hrHPV's capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in keratinocytes. UCHL1 accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3) K63 poly-ubiquitination which lead to lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3. Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65 phosphorylation and canonical NF-κB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Papillomavirus Humano 16/imunologia , Imunidade Inata , Queratinócitos/imunologia , Infecções por Papillomavirus/imunologia , Ubiquitina Tiolesterase/imunologia , Regulação para Cima/imunologia , Células 3T3 , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação Viral da Expressão Gênica/imunologia , Papillomavirus Humano 16/metabolismo , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Queratinócitos/virologia , Camundongos , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/patologia , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Ubiquitina Tiolesterase/biossíntese , Ubiquitinação/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
12.
Nature ; 452(7185): 365-9, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18354482

RESUMO

REST/NRSF (repressor-element-1-silencing transcription factor/neuron-restrictive silencing factor) negatively regulates the transcription of genes containing RE1 sites. REST is expressed in non-neuronal cells and stem/progenitor neuronal cells, in which it inhibits the expression of neuron-specific genes. Overexpression of REST is frequently found in human medulloblastomas and neuroblastomas, in which it is thought to maintain the stem character of tumour cells. Neural stem cells forced to express REST and c-Myc fail to differentiate and give rise to tumours in the mouse cerebellum. Expression of a splice variant of REST that lacks the carboxy terminus has been associated with neuronal tumours and small-cell lung carcinomas, and a frameshift mutant (REST-FS), which is also truncated at the C terminus, has oncogenic properties. Here we show, by using an unbiased screen, that REST is an interactor of the F-box protein beta-TrCP. REST is degraded by means of the ubiquitin ligase SCF(beta-TrCP) during the G2 phase of the cell cycle to allow transcriptional derepression of Mad2, an essential component of the spindle assembly checkpoint. The expression in cultured cells of a stable REST mutant, which is unable to bind beta-TrCP, inhibited Mad2 expression and resulted in a phenotype analogous to that observed in Mad2(+/-) cells. In particular, we observed defects that were consistent with faulty activation of the spindle checkpoint, such as shortened mitosis, premature sister-chromatid separation, chromosome bridges and mis-segregation in anaphase, tetraploidy, and faster mitotic slippage in the presence of a spindle inhibitor. An indistinguishable phenotype was observed by expressing the oncogenic REST-FS mutant, which does not bind beta-TrCP. Thus, SCF(beta-TrCP)-dependent degradation of REST during G2 permits the optimal activation of the spindle checkpoint, and consequently it is required for the fidelity of mitosis. The high levels of REST or its truncated variants found in certain human tumours may contribute to cellular transformation by promoting genomic instability.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Instabilidade Cromossômica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Fase G2 , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Proteínas Mad2 , Mitose , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Fuso Acromático/fisiologia , Fatores de Transcrição/genética , Proteínas Contendo Repetições de beta-Transducina/deficiência , Proteínas Contendo Repetições de beta-Transducina/genética
13.
ACS Med Chem Lett ; 15(2): 250-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352832

RESUMO

We have applied a proteolysis targeting chimera (PROTAC) technology to obtain a peptidomimetic molecule able to trigger the degradation of SARS-CoV-2 3-chymotrypsin-like protease (3CLPro). The PROTAC molecule was designed by conjugating a GC-376 based dipeptidyl 3CLPro ligand to a pomalidomide moiety through a piperazine-piperidine linker. NMR and crystallographic data complemented with enzymatic and cellular studies showed that (i) the dipeptidyl moiety of PROTAC binds to the active site of the dimeric state of SARS-CoV-2 3CLPro forming a reversible covalent bond with the sulfur atom of catalytic Cys145, (ii) the linker and the pomalidomide cereblon-ligand of PROTAC protrude from the protein, displaying a high degree of flexibility and no interactions with other regions of the protein, and (iii) PROTAC reduces the protein levels of SARS-CoV-2 3CLPro in cultured cells. This study paves the way for the future applicability of peptidomimetic PROTACs to tackle 3CLPro-dependent viral infections.

14.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474372

RESUMO

Overexpression of the Runt-related transcription factor 2 (RUNX2) has been reported in several cancer types, and the C-X-C motif chemokine receptor 4 (CXCR4) has an important role in tumour progression. However, the interplay between CXCR4 and RUNX2 in melanoma cells remains poorly understood. In the present study, we used melanoma cells and a RUNX2 knockout (RUNX2-KO) in vitro model to assess the influence of RUNX2 on CXCR4 protein levels along with its effects on markers associated with cell invasion and autophagy. Osteotropism was assessed using a 3D microfluidic model. Moreover, we assessed the impact of CXCR4 on the cellular levels of key cellular signalling proteins involved in autophagy. We observed that melanoma cells express both RUNX2 and CXCR4. Restored RUNX2 expression in RUNX2 KO cells increased the expression levels of CXCR4 and proteins associated with the metastatic process. The protein markers of autophagy LC3 and beclin were upregulated in response to increased CXCR4 levels. The CXCR4 inhibitor WZ811 reduced osteotropism and activated the mTOR and p70-S6 cell signalling proteins. Our data indicate that the RUNX2 transcription factor promotes the expression of the CXCR4 chemokine receptor on melanoma cells, which in turn promotes autophagy, cell invasiveness, and osteotropism, through the inhibition of the mTOR signalling pathway. Our data suggest that RUNX2 promotes melanoma progression by upregulating CXCR4, and we identify the latter as a key player in melanoma-related osteotropism.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptores CXCR4
15.
Cell Death Differ ; 31(2): 170-187, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38062245

RESUMO

The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteômica , Fatores de Transcrição/genética , Transferases , Proteína GLI1 em Dedos de Zinco/genética
16.
Proteomics ; 13(3-4): 526-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23019148

RESUMO

Ubiquitin (Ub) is a small protein modifier that is covalently attached to the ε-amino group of lysine residues of protein substrates, generally targeting them for degradation. Due to the emergence of specific anti-diglycine (-GG) antibodies and the improvement in MS, it is now possible to identify more than 10 000 ubiquitylated sites in a single proteomics study. Besides cataloging ubiquitylated sites, it is equally important to unravel the biological relationship between ubiquitylated substrates and the ubiquitin conjugation machinery. Relevant to this, we discuss the role of affinity purification-MS (AP-MS), in characterizing E3 ligase-substrate complexes. Recently, such strategies have also been adapted to screen for binding partners of both deubiquitylating enzymes (DUBs) and ubiquitin-binding domains (UBDs). The complexity of the "ubiquitome" is further expanded by the fact that Ub itself can be ubiquitylated at any of its seven lysine residues forming polyubiquitin (polyUb), thus diversifying its lengths and topologies to suit a variety of molecular recognition processes. Therefore, applying MS to study polyUb linkages is also becoming an emerging and important area. Finally, we discuss the future of MS-based proteomics in answering important questions with respect to ubiquitylation.


Assuntos
Transdução de Sinais , Ubiquitina/metabolismo , Animais , Endopeptidases/fisiologia , Humanos , Espectrometria de Massas , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Ubiquitinadas/isolamento & purificação , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
17.
Nature ; 450(7167): 309-13, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994099

RESUMO

JHDM1B is an evolutionarily conserved and ubiquitously expressed member of the JHDM (JmjC-domain-containing histone demethylase) family. Because it contains an F-box motif, this protein is also known as FBXL10 (ref. 4). With the use of a genome-wide RNAi screen, the JHDM1B worm orthologue (T26A5.5) was identified as a gene that regulates growth. In the mouse, four independent screens have identified JHDM1B as a putative tumour suppressor by retroviral insertion analysis. Here we identify human JHDM1B as a nucleolar protein and show that JHDM1B preferentially binds the transcribed region of ribosomal DNA to repress the transcription of ribosomal RNA genes. We also show that repression of ribosomal RNA genes by JHDM1B is dependent on its JmjC domain, which is necessary for the specific demethylation of trimethylated lysine 4 on histone H3 in the nucleolus. In agreement with the notion that ribosomal RNA synthesis and cell growth are coupled processes, we show a JmjC-domain-dependent negative effect of JHDM1B on cell size and cell proliferation. Because aberrant ribosome biogenesis and the disruption of epigenetic control mechanisms contribute to cellular transformation, these results, together with the low levels of JHDM1B expression found in aggressive brain tumours, suggest a role for JHDM1B in cancer development.


Assuntos
Nucléolo Celular/metabolismo , DNA Ribossômico/genética , Proteínas F-Box/metabolismo , Genes de RNAr/genética , Proteínas Nucleares/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proliferação de Células , DNA Ribossômico/metabolismo , Regulação para Baixo , Proteínas F-Box/química , Células HeLa , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Metilação , Proteínas Nucleares/química , Oxirredutases N-Desmetilantes/química , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Repressoras/química
18.
Cell Death Dis ; 14(11): 726, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938564

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer associated with metastasis, high recurrence rate, and poor survival. The basic helix-loop-helix transcription factor SHARP1 (Split and Hairy-related Protein 1) has been identified as a suppressor of the metastatic behavior of TNBC. SHARP1 blocks the invasive phenotype of TNBC by inhibiting hypoxia-inducible factors and its loss correlates with poor survival of breast cancer patients. Here, we show that SHARP1 is an unstable protein that is targeted for proteasomal degradation by the E3 ubiquitin ligase complex SCFßTrCP. SHARP1 recruits ßTrCP via a phosphodegron encompassing Ser240 and Glu245 which are required for SHARP1 ubiquitylation and degradation. Furthermore, mice injected with TNBC cells expressing the non-degradable SHARP1(S240A/E245A) mutant display reduced tumor growth and increased tumor-free survival. Our study suggests that targeting the ßTrCP-dependent degradation of SHARP1 represents a therapeutic strategy in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fenótipo , Sinapsinas
19.
Cell Rep ; 42(1): 111999, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662618

RESUMO

Substrate degradation by the ubiquitin proteasome system (UPS) in specific membrane compartments remains elusive. Here, we show that the interplay of two lipid modifications and PDE6δ regulates compartmental substrate targeting via the SCFFBXL2. FBXL2 is palmitoylated in a prenylation-dependent manner on cysteines 417 and 419 juxtaposed to the CaaX motif. Palmitoylation/depalmitoylation regulates its subcellular trafficking for substrate engagement and degradation. To control its subcellular distribution, lipid-modified FBXL2 interacts with PDE6δ. Perturbing the equilibrium between FBXL2 and PDE6δ disrupts the delivery of FBXL2 to all membrane compartments, whereas depalmitoylated FBXL2 is enriched on the endoplasmic reticulum (ER). Depalmitoylated FBXL2(C417S/C419S) promotes the degradation of IP3R3 at the ER, inhibits IP3R3-dependent mitochondrial calcium overload, and counteracts calcium-dependent cell death upon oxidative stress. In contrast, disrupting the PDE6δ-FBXL2 equilibrium has the opposite effect. These findings describe a mechanism underlying spatially-restricted substrate degradation and suggest that inhibition of FBXL2 palmitoylation and/or binding to PDE6δ may offer therapeutic benefits.


Assuntos
Proteínas F-Box , Proteínas F-Box/metabolismo , Cálcio/metabolismo , Lipoilação , Ubiquitinação , Lipídeos
20.
Dev Cell ; 12(3): 443-55, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336909

RESUMO

During metazoan development, cells acquire both positional and temporal identities. The Caenorhabditis elegans heterochronic loci are global regulators of larval temporal fates. Most encode conserved transcriptional and translational factors, which affect stage-appropriate programs in various tissues. Here, we describe dre-1, a heterochronic gene, whose mutant phenotypes include precocious terminal differentiation of epidermal stem cells and altered temporal patterning of gonadal outgrowth. Genetic interactions with other heterochronic loci place dre-1 in the larval-to-adult switch. dre-1 encodes a highly conserved F box protein, suggesting a role in an SCF ubiquitin ligase complex. Accordingly, RNAi knockdown of the C. elegans SKP1-like homolog SKR-1, the cullin CUL-1, and ring finger RBX homologs yielded similar heterochronic phenotypes. DRE-1 and SKR-1 form a complex, as do the human orthologs, hFBXO11 and SKP1, revealing a phyletically ancient interaction. The identification of core components involved in SCF-mediated modification and/or proteolysis suggests an important level of regulation in the heterochronic hierarchy.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Regulação para Baixo/genética , Evolução Molecular , Proteínas F-Box/genética , Proteínas F-Box/isolamento & purificação , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa