Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioinformatics ; 40(9)2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39240653

RESUMO

MOTIVATION: Gene retrocopies arise from the reverse transcription and genomic insertion of processed mRNA transcripts. These elements have significantly contributed to genetic diversity and novelties throughout the evolution of many species. However, the study of retrocopies has been challenging, owing to the absence of comprehensive, complete, and user-friendly databases for diverse species. RESULTS: Here, we introduce an improved version of RCPedia, an integrative database meticulously designed for the study of retrocopies. RCPedia offers an extensive catalog of retrocopies identified across 44 species, which includes 13 primates, 4 rodents, 6 chiropterans, 12 other mammals, 4 birds, turtles, lizards, frogs, zebrafish, and Drosophila. The database offers the most complete compilation of retrocopies per species, accompanied by detailed genomic annotations, expression data, and links to other data portals. Furthermore, RCPedia features a streamlined representation of data and an efficient querying system, establishing it as an invaluable tool for researchers in the fields of genomics, evolutionary biology, and transposable elements (TEs). In summary, RCPedia aims to enhance the investigation of retrocopies and their pivotal roles in shaping the genomic landscapes of diverse species. AVAILABILITY AND IMPLEMENTATION: RCPedia is available at https://www.rcpediadb.org.


Assuntos
Bases de Dados Genéticas , Animais , Genômica/métodos , Elementos de DNA Transponíveis , Evolução Molecular , Retroelementos , Humanos
2.
Carcinogenesis ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842162

RESUMO

Most tissues are continuously renovated through the division of stem cells and the death of old or damaged cells, which is known as cell turnover rate (CTOR). Despite being in steady state, tissues have different population dynamics and leading to diverse clonality levels. Here, we propose and test that cell population dynamics can be a cancer driver. We employed the evolutionary software esiCancer to show that CTOR, within a range comparable to what is observed in human tissues, can amplify the risk of a mutation due to ancestral selection (ANSEL). In a high CTOR tissue, a mutated ancestral cell is likely to be selected and persist over generations, which leads to a scenario of elevated ANSEL profile, characterized by few niches of large clones, which does not occur in low CTOR. We found that CTOR is significantly associated with the risk of developing cancer, even when correcting for mutation load, indicating that population dynamics per se is a cancer driver. This concept is central to understanding cancer risk and for the design of new therapeutic interventions that minimize the contribution of ANSEL in cancer growth.

3.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183032

RESUMO

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Assuntos
Neoplasias , Neuroglia , Humanos , Estudos Retrospectivos , Neuroglia/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Pericitos , Microambiente Tumoral/fisiologia , Neoplasias/patologia
4.
RNA Biol ; 20(1): 311-322, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294214

RESUMO

The exon junction complex (EJC) plays key roles throughout the lifespan of RNA and is particularly relevant in the nervous system. We investigated the roles of two EJC members, the paralogs MAGOH and MAGOHB, with respect to brain tumour development. High MAGOH/MAGOHB expression was observed in 14 tumour types; glioblastoma (GBM) showed the greatest difference compared to normal tissue. Increased MAGOH/MAGOHB expression was associated with poor prognosis in glioma patients, while knockdown of MAGOH/MAGOHB affected different cancer phenotypes. Reduced MAGOH/MAGOHB expression in GBM cells caused alterations in the splicing profile, including re-splicing and skipping of multiple exons. The binding profiles of EJC proteins indicated that exons affected by MAGOH/MAGOHB knockdown accumulated fewer complexes on average, providing a possible explanation for their sensitivity to MAGOH/MAGOHB knockdown. Transcripts (genes) showing alterations in the splicing profile are mainly implicated in cell division, cell cycle, splicing, and translation. We propose that high MAGOH/MAGOHB levels are required to safeguard the splicing of genes in high demand in scenarios requiring increased cell proliferation (brain development and GBM growth), ensuring efficient cell division, cell cycle regulation, and gene expression (splicing and translation). Since differentiated neuronal cells do not require increased MAGOH/MAGOHB expression, targeting these paralogs is a potential option for treating GBM.


Assuntos
Genes cdc , Glioblastoma , Humanos , Splicing de RNA , Divisão Celular , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo
5.
RNA ; 25(7): 768-782, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004009

RESUMO

RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Tumorais Cultivadas
6.
J Biomed Inform ; 66: 116-128, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28057566

RESUMO

Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo.


Assuntos
Sistemas Computacionais , Perfilação da Expressão Gênica , Semântica , Software , Genômica , Linguagens de Programação
7.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693105

RESUMO

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Assuntos
Camptotecina/análogos & derivados , Neoplasias do Colo , Fluoruracila , Células-Tronco Neoplásicas , Esferoides Celulares , Receptores alfa dos Hormônios Tireóideos , Tri-Iodotironina , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Tri-Iodotironina/farmacologia , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Fenótipo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Retinal Desidrogenase/metabolismo , Retinal Desidrogenase/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
8.
Oncogene ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174858

RESUMO

Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.

9.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585848

RESUMO

RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. SERBP1 is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. Using a proteomics approach followed by functional analysis, we defined SERBP1's interactome. We uncovered novel SERBP1 roles in splicing, cell division, and ribosomal biogenesis and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's disease brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

10.
BMC Genomics ; 14 Suppl 6: S2, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24341380

RESUMO

BACKGROUND: The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. RESULTS: We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. CONCLUSIONS: The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Semântica , Software , Animais , Ontologia Genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Interface Usuário-Computador
11.
Mob DNA ; 14(1): 12, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684690

RESUMO

BACKGROUND: Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS: In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS: Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.

12.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370684

RESUMO

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with a 5-year overall survival rate of approximately 30%. Despite recent advances in therapeutic options, relapse remains the leading cause of death and poor survival outcomes. New drugs benefit specific small subgroups of patients with actionable therapeutic targets. Thus, finding new targets with greater applicability should be pursued. Olfactory receptors (ORs) are seven transmembrane G-protein coupled receptors preferentially expressed in sensory neurons with a critical role in recognizing odorant molecules. Recent studies have revealed ectopic expression and putative function of ORs in nonolfactory tissues and pathologies, including AML. Here, we investigated OR expression in 151 AML samples, 6400 samples of 15 other cancer types, and 11,200 samples of 51 types of healthy tissues. First, we identified 19 ORs with a distinct and major expression pattern in AML, which were experimentally validated by RT-PCR in an independent set of 13 AML samples, 13 healthy donors, and 8 leukemia cell lines. We also identified an OR signature with prognostic potential for AML patients. Finally, we found cancer-related genes coexpressed with the ORs in the AML samples. In summary, we conducted an extensive study to identify ORs that can be used as novel biomarkers for the diagnosis of AML and as potential drug targets.

13.
Neuro Oncol ; 25(3): 459-470, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35862252

RESUMO

BACKGROUND: The loss of neurogenic tumor suppressor microRNAs miR-124, miR-128, and miR-137 is associated with glioblastoma's undifferentiated state. Most of their impact comes via the repression of a network of oncogenic transcription factors. We conducted a high-throughput functional siRNA screen in glioblastoma cells and identify E74 like ETS transcription factor 4 (ELF4) as the leading contributor to oncogenic phenotypes. METHODS: In vitro and in vivo assays were used to assess ELF4 impact on cancer phenotypes. We characterized ELF4's mechanism of action via genomic and lipidomic analyses. A MAPK reporter assay verified ELF4's impact on MAPK signaling, and qRT-PCR and western blotting were used to corroborate ELF4 regulatory role on most relevant target genes. RESULTS: ELF4 knockdown resulted in significant proliferation delay and apoptosis in GBM cells and long-term growth delay and morphological changes in glioma stem cells (GSCs). Transcriptomic analyses revealed that ELF4 controls two interlinked pathways: 1) Receptor tyrosine kinase signaling and 2) Lipid dynamics. ELF4 modulation directly affected receptor tyrosine kinase (RTK) signaling, as mitogen-activated protein kinase (MAPK) activity was dependent upon ELF4 levels. Furthermore, shotgun lipidomics revealed that ELF4 depletion disrupted several phospholipid classes, highlighting ELF4's importance in lipid homeostasis. CONCLUSIONS: We found that ELF4 is critical for the GBM cell identity by controlling genes of two dependent pathways: RTK signaling (SRC, PTK2B, and TNK2) and lipid dynamics (LRP1, APOE, ABCA7, PLA2G6, and PITPNM2). Our data suggest that targeting these two pathways simultaneously may be therapeutically beneficial to GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Fatores de Transcrição/genética , Glioblastoma/patologia , MicroRNAs/genética , Receptores Proteína Tirosina Quinases/genética , Regulação Neoplásica da Expressão Gênica , Lipídeos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Proteínas de Ligação a DNA/genética , Proteínas Tirosina Quinases/metabolismo
14.
BMC Genomics ; 13 Suppl 5: S3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095840

RESUMO

BACKGROUND: Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain.


Assuntos
Disciplinas das Ciências Biológicas/normas , Linguagens de Programação , Semântica , Terminologia como Assunto , Vocabulário Controlado
15.
Viruses ; 14(4)2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458557

RESUMO

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) are constantly threatening global public health. With no end date, the pandemic persists with the emergence of novel variants that threaten the effectiveness of diagnostic tests and vaccines. Mutations in the Spike surface protein of the virus are regularly observed in the new variants, potentializing the emergence of novel viruses with different tropism from the current ones, which may change the severity and symptoms of the disease. Growing evidence has shown that mutations are being selected in favor of variants that are more capable of evading the action of neutralizing antibodies. In this context, the most important factor guiding the evolution of SARS-CoV-2 is its interaction with the host's immune system. Thus, as current vaccines cannot block the transmission of the virus, measures complementary to vaccination, such as the use of masks, hand hygiene, and keeping environments ventilated remain essential to delay the emergence of new variants. Importantly, in addition to the involvement of the immune system in the evolution of the virus, we highlight several chemical parameters that influence the molecular interactions between viruses and host cells during invasion and are also critical tools making novel variants more transmissible. In this review, we dissect the impacts of the Spike mutations on biological parameters such as (1) the increase in Spike binding affinity to hACE2; (2) bound time for the receptor to be cleaved by the proteases; (3) how mutations associate with the increase in RBD up-conformation state in the Spike ectodomain; (4) expansion of uncleaved Spike protein in the virion particles; (5) increment in Spike concentration per virion particles; and (6) evasion of the immune system. These factors play key roles in the fast spreading of SARS-CoV-2 variants of concern, including the Omicron.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
16.
Cancers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358851

RESUMO

Purpose: Solid tumors harboring tumor mutational burden (TMB) ≥10 mutations per megabase (mut/Mb) received agnostic approval for pembrolizumab. This work aims to analyze the somatic mutational profile's influence on the outcomes of patients with TMB-high tumors treated with immune checkpoint inhibitors (ICIs). Methods: This post-hoc analysis evaluated clinical and molecular features of patients with solid tumors treated with ICIs that could be either monoclonal antibody directed against programmed cell death protein-1 or monoclonal antibody directed against programmed cell death ligand 1 (anti-PD-1/anti-PD-L1), monoclonal antibody directed against cytotoxic T lymphocyte-associated antigen (anti-CTLA-4) or a combined treatment regimen including one anti-PD-1/anti-PD-L1 and one anti-CTLA-4 (ICIs combination). We performed OS analysis for TMB thresholds of ≥10, ≥20, and <10 mut/Mb. We assessed OS according to the mutational profile for a TMB ≥ 10 mut/Mb cutoff. For genes correlated with OS at the univariate assessment, we conducted a Cox multivariate analysis adjusted by median TMB, sex, age, microsatellite instability (MSI), and histology. Results: A total of 1661 patients were investigated; 488 with a TMB ≥10 mut/Mb (29.4%). The median OS was 42 months for TMB ≥10 or 20 mut/Mb, and 15 months for TMB <10 mut/Mb (p < 0.005). Among TMB ≥10 mut/Mb patients, mutations in E2F3 or STK11 correlated with worse OS, and mutations in NTRK3, PTPRD, RNF43, TENT5C, TET1, or ZFHX3 with better OS. These associations were confirmed with univariate and multivariate analyses (p < 0.05). Melanoma histology and TMB above the median endowed patients with better OS (p < 0.05), while MSI status, age, and gender did not have a statistically significant effect on OS. Conclusion: Combining TMB and mutation profiles in key cancer genes can better qualify patients for ICI treatment and predict their OS.

17.
Mol Oncol ; 16(22): 3975-3993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36217307

RESUMO

The THRA gene, encoding the thyroid hormone nuclear receptor TRα1, is expressed in an increasing gradient at the bottom of intestinal crypts, overlapping with high Wnt and Notch activities. Importantly, THRA is upregulated in colorectal cancers, particularly in the high-Wnt molecular subtype. The basis of this specific and/or altered expression pattern has remained unknown. To define the mechanisms controlling THRA transcription and TRα1 expression, we used multiple in vitro and ex vivo approaches. Promoter analysis demonstrated that transcription factors important for crypt homeostasis and altered in colorectal cancers, such as transcription factor 7-like 2 (TCF7L2; Wnt pathway), recombining binding protein suppressor of hairless (RBPJ; Notch pathway), and homeobox protein CDX2 (epithelial cell identity), modulate THRA activity. Specifically, although TCF7L2 and CDX2 stimulated THRA, RBPJ induced its repression. In-depth analysis of the Wnt-dependent increase showed direct regulation of the THRA promoter in cells and of TRα1 expression in murine enteroids. Given our previous results on the control of the Wnt pathway by TRα1, our new results unveil a complex regulatory loop and synergy between these endocrine and epithelial-cell-intrinsic signals. Our work describes, for the first time, the regulation of the THRA gene in specific cell and tumor contexts.


Assuntos
Neoplasias Colorretais , Genes erbA , Humanos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias Colorretais/genética
18.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068861

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

19.
NAR Cancer ; 3(2): zcab024, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316711

RESUMO

Nowadays, the massive amount of data generated by modern sequencing technologies provides an unprecedented opportunity to find genes associated with cancer patient prognosis, connecting basic and translational research. However, treating high dimensionality of gene expression data and integrating it with clinical variables are major challenges to perform these analyses. Here, we present Reboot, an integrative approach to find and validate genes and transcripts (splicing isoforms) associated with cancer patient prognosis from high dimensional expression datasets. Reboot innovates by using a multivariate strategy with penalized Cox regression (LASSO method) combined with a bootstrap approach, in addition to statistical tests and plots to support the findings. Applying Reboot on data from 154 glioblastoma patients, we identified a three-gene signature (IKBIP, OSMR, PODNL1) whose increased derived risk score was significantly associated with worse patients' prognosis. Similarly, Reboot was able to find a seven-splicing isoforms signature related to worse overall survival in 177 pancreatic adenocarcinoma patients with elevated risk scores after uni- and multivariate analyses. In summary, Reboot is an efficient, intuitive and straightforward way of finding genes or splicing isoforms signatures relevant to patient prognosis, which can democratize this kind of analysis and shed light on still under-investigated cancer-related genes and splicing isoforms.

20.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466745

RESUMO

Tumor suppressor microRNAs (miRNAs) have been explored as agents to target cancer stem cells. Most strategies use a single miRNA mimic and present many disadvantages, such as the amount of reagent required and the diluted effect on target genes. miRNAs work in a cooperative fashion to regulate distinct biological processes and pathways. Therefore, we propose that miRNA combinations could provide more efficient ways to target cancer stem cells. We have previously shown that miR-124, miR-128, and miR-137 function synergistically to regulate neurogenesis. We used a combination of these three miRNAs to treat glioma stem cells and showed that this treatment was much more effective than single miRNAs in disrupting cell proliferation and survival and promoting differentiation and response to radiation. Transcriptomic analyses indicated that transcription regulation, angiogenesis, metabolism, and neuronal differentiation are among the main biological processes affected by transfection of this miRNA combination. In conclusion, we demonstrated the value of using combinations of neurogenic miRNAs to disrupt cancer phenotypes and glioma stem cell growth. The synergistic effect of these three miRNA amplified the repression of oncogenic factors and the effect on cancer relevant pathways. Future therapeutic approaches would benefit from utilizing miRNA combinations, especially when targeting cancer-initiating cell populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa