Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nucleic Acids Res ; 33(20): e179, 2005 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-16314309

RESUMO

A novel microRNA (miRNA) quantification method has been developed using stem-loop RT followed by TaqMan PCR analysis. Stem-loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30,000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem-loop RT-PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem-loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.


Assuntos
MicroRNAs/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Linhagem Celular , Primers do DNA/química , Humanos , Camundongos , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Precursores de RNA/análise
2.
Med Sci Monit ; 11(2): BR31-40, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15668624

RESUMO

BACKGROUND: A central component of the complex human biological stress response is the modulation of the neuro-endocrine-immune system with its intricate feedback loops that support homeostatic regulation. Well-documented marked gene expression variability among human and animal subjects coupled with sample collection timing and delayed effects, as well as a host of molecular detection challenges renders the quest for deciphering the human biological stress response challenging from many perspectives. MATERIAL/METHODS: A novel Recreational Music-Making (RMM) program was used in combination with a new strategy for peripheral blood gene expression analysis to assess individualized genomic stress induction signatures. The expression of 45 immune response-related genes was determined using a multiplex preamplification step prior to conventional quantitative Real Time Polymerase Chain Reaction (qRT-PCR) mRNA analysis to characterize the multidimensional biological impact of a 2-phase controlled stress induction/amelioration experimental protocol in 32 randomly assigned individuals. RESULTS: In subjects performing the RMM activity following a 1-hour stress induction protocol, 19 out of 45 markers demonstrated reversal with significant (P = 0.05) Pearson correlations in contrast to 6 out of 45 markers in the resting control group and 0 out of 45 in the ongoing stressor group. CONCLUSIONS: The resultant amelioration of stress-induced genomic expression supports the underlying premise that RMM warrants additional consideration as a rational choice within our armamentarium of stress reduction strategies. Modulation of individualized genomic stress induction signatures in peripheral blood presents a new opportunity for elucidating the dynamics of the human stress response.


Assuntos
Perfilação da Expressão Gênica , Música/psicologia , Recreação/psicologia , Estresse Fisiológico/genética , Adolescente , Adulto , Idoso , DNA Complementar/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/genética
3.
Genome Res ; 15(4): 454-62, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15781572

RESUMO

The extent and patterns of linkage disequilibrium (LD) determine the feasibility of association studies to map genes that underlie complex traits. Here we present a comparison of the patterns of LD across four major human populations (African-American, Caucasian, Chinese, and Japanese) with a high-resolution single-nucleotide polymorphism (SNP) map covering almost the entire length of chromosomes 6, 21, and 22. We constructed metric LD maps formulated such that the units measure the extent of useful LD for association mapping. LD reaches almost twice as far in chromosome 6 as in chromosomes 21 or 22, in agreement with their differences in recombination rates. By all measures used, out-of-Africa populations showed over a third more LD than African-Americans, highlighting the role of the population's demography in shaping the patterns of LD. Despite those differences, the long-range contour of the LD maps is remarkably similar across the four populations, presumably reflecting common localization of recombination hot spots. Our results have practical implications for the rational design and selection of SNPs for disease association studies.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 22 , Cromossomos Humanos Par 6 , Demografia , Desequilíbrio de Ligação , Recombinação Genética , Negro ou Afro-Americano/genética , Povo Asiático/genética , População Negra/genética , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa