RESUMO
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genéticaRESUMO
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Assuntos
Infecções por Adenovirus Humanos , Genômica , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Hepatite/epidemiologia , Hepatite/imunologia , Hepatite/virologia , Imuno-Histoquímica , Fígado/imunologia , Fígado/virologia , Proteômica , Linfócitos T/imunologiaRESUMO
PURPOSE: COVID-19 infection in immunodeficient individuals can result in chronically poor health, persistent or relapsing SARS-CoV-2 PCR positivity, and long-term infectious potential. While clinical trials have demonstrated promising outcomes using anti-SARS-CoV-2 medicines in immunocompetent hosts, their ability to achieve sustained viral clearance in immunodeficient patients remains unknown. We therefore aimed to study long-term virological outcomes in patients treated at our centre. METHODS: We followed up immunocompromised inpatients treated with casirivimab-imdevimab (Ronapreve) between September and December 2021, and immunocompromised patients who received sotrovimab, molnupiravir, nirmatrelvir/ritonavir (Paxlovid), or no treatment from December 2021 to March 2022. Nasopharyngeal swab and sputum samples were obtained either in hospital or in the community until sustained viral clearance, defined as 3 consecutive negative PCR samples, was achieved. Positive samples were sequenced and analysed for mutations of interest. RESULTS: We observed sustained viral clearance in 71 of 103 patients, none of whom died. Of the 32/103 patients where sustained clearance was not confirmed, 6 died (between 2 and 34 days from treatment). Notably, we observed 25 cases of sputum positivity despite negative nasopharyngeal swab samples, as well as recurrence of SARS-CoV-2 positivity following a negative sample in 12 cases. Patients were then divided into those who cleared within 28 days and those with PCR positivity beyond 28 days. We noted lower B cell counts in the group with persistent PCR positivity (mean (SD) 0.06 (0.10) ×109/L vs 0.22 (0.28) ×109/L, p = 0.015) as well as lower IgA (median (IQR) 0.00 (0.00-0.15) g/L vs 0.40 (0.00-0.95) g/L, p = 0.001) and IgM (median (IQR) 0.05 (0.00-0.28) g/L vs 0.35 (0.10-1.10) g/L, p = 0.005). No differences were seen in CD4+ or CD8+ T cell counts. Antiviral treatment did not impact risk of persistent PCR positivity. CONCLUSION: Persistent SARS-CoV-2 PCR positivity is common among immunodeficient individuals, especially those with antibody deficiencies, regardless of anti-viral treatment. Peripheral B cell count and serum IgA and IgM levels are predictors of viral persistence.
Assuntos
COVID-19 , Síndromes de Imunodeficiência , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Antivirais/uso terapêutico , Reação em Cadeia da Polimerase , Imunoglobulina A , Imunoglobulina M , Teste para COVID-19RESUMO
The advent of pneumococcal conjugate vaccines led to the near disappearance of most of the included serotypes in high-income settings but also the rise of nonvaccine-type colonization and disease. Alternative strategies, using genetically conserved proteins as antigens, have been evaluated preclinically and clinically for years, so far unsuccessfully. One possible explanation for the failure of these efforts is that the choice of antigens may not have been sufficiently guided by an understanding of the gene expression pattern in the context of infection. Here, we present a targeted transcriptomic analysis of 160 pneumococcal genes encoding bacterial surface-exposed proteins in mouse models, human colonization, and human meningitis. We present the overlap of these different transcriptomic profiles. We identify two bacterial genes that are highly expressed in the context of mouse and human infection: SP_0282, an IID component of a mannose phosphotransferase system (PTS), and SP_1739, encoding RNase Y. We show that these two proteins can confer protection against pneumococcal nasopharyngeal colonization and intraperitoneal challenge in a murine model and generate opsonophagocytic antibodies. This study emphasizes and confirms the importance of studies of pneumococcal gene expression of bacterial surface proteins during human infection and colonization and may pave the way for the selection of a protein-based vaccine candidate.
Assuntos
Infecções Pneumocócicas , Animais , Proteínas de Bactérias/genética , Humanos , Camundongos , Nasofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/genética , Sorogrupo , Streptococcus pneumoniae/genética , Transcriptoma , Vacinas ConjugadasRESUMO
Follicular lymphoma (FL) is a common indolent B-cell lymphoma that can transform into the more aggressive transformed FL (tFL). However, the molecular process driving this transformation is uncertain. In this work, we aimed to identify microRNA (miRNA)-binding sites recurrently mutated in follicular lymphoma patients, as well as in transformed FL patients. Using whole-genome sequencing data from FL tumors, we discovered 544 mutations located in bioinformatically predicted microRNA-binding sites. We then studied these specific regions using targeted sequencing in a cohort of 55 FL patients, found 16 recurrent mutations, and identified a further 69 variants. After filtering for QC, we identified 21 genes with mutated miRNA-binding sites that were also enriched for B-cell-associated genes by Gene Ontology. Over 40% of mutations identified in these genes were present exclusively in tFL patients. We validated the predicted miRNA-binding sites of five of the genes by luciferase assay and demonstrated that the identified mutations in BCL2 and EZH2 genes impaired the binding efficiency of miR-5008 and miR-144 and regulated the endogenous levels of messenger RNA (mRNA).
Assuntos
Sítios de Ligação , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linfoma Folicular/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Estudos de Coortes , Humanos , Londres , Mutação , Estudos Retrospectivos , EspanhaRESUMO
BACKGROUND: Mixed, polyclonal Mycobacterium tuberculosis infection occurs in natural populations. Developing an effective method for detecting such cases is important in measuring the success of treatment and reconstruction of transmission between patients. Using whole genome sequence (WGS) data, we assess two methods for detecting mixed infection: (i) a combination of the number of heterozygous sites and the proportion of heterozygous sites to total SNPs, and (ii) Bayesian model-based clustering of allele frequencies from sequencing reads at heterozygous sites. RESULTS: In silico and in vitro artificially mixed and known pure M. tuberculosis samples were analysed to determine the specificity and sensitivity of each method. We found that both approaches were effective in distinguishing between pure strains and mixed infection where there was relatively high (> 10%) proportion of a minor strain in the mixture. A large dataset of clinical isolates (n = 1963) from the Karonga Prevention Study in Northern Malawi was tested to examine correlations with patient characteristics and outcomes with mixed infection. The frequency of mixed infection in the population was found to be around 10%, with an association with year of diagnosis, but no association with age, sex, HIV status or previous tuberculosis. CONCLUSIONS: Mixed Mycobacterium tuberculosis infection was identified in silico using whole genome sequence data. The methods presented here can be applied to population-wide analyses of tuberculosis to estimate the frequency of mixed infection, and to identify individual cases of mixed infections. These cases are important when considering the evolution and transmission of the disease, and in patient treatment.
Assuntos
Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Tuberculose/diagnóstico , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Teorema de Bayes , DNA Bacteriano , Feminino , Genoma Bacteriano , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Tuberculose/microbiologia , Adulto JovemRESUMO
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.
Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Camundongos/genética , Fenótipo , Alelos , Animais , Animais de Laboratório/genética , Genômica , Camundongos/classificação , Camundongos Endogâmicos C57BL/genética , Filogenia , Locos de Características Quantitativas/genéticaRESUMO
BCCTBbp (http://bioinformatics.breastcancertissue bank.org) was initially developed as the data-mining portal of the Breast Cancer Campaign Tissue Bank (BCCTB), a vital resource of breast cancer tissue for researchers to support and promote cutting-edge research. BCCTBbp is dedicated to maximising research on patient tissues by initially storing genomics, methylomics, transcriptomics, proteomics and microRNA data that has been mined from the literature and linking to pathways and mechanisms involved in breast cancer. Currently, the portal holds 146 datasets comprising over 227,795 expression/genomic measurements from various breast tissues (e.g. normal, malignant or benign lesions), cell lines and body fluids. BCCTBbp can be used to build on breast cancer knowledge and maximise the value of existing research. By recording a large number of annotations on samples and studies, and linking to other databases, such as NCBI, Ensembl and Reactome, a wide variety of different investigations can be carried out. Additionally, BCCTBbp has a dedicated analytical layer allowing researchers to further analyse stored datasets. A future important role for BCCTBbp is to make available all data generated on BCCTB tissues thus building a valuable resource of information on the tissues in BCCTB that will save repetition of experiments and expand scientific knowledge.
Assuntos
Neoplasias da Mama/genética , Bases de Dados Genéticas , Bancos de Tecidos , Neoplasias da Mama/metabolismo , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Internet , Metilação , MicroRNAs/metabolismo , ProteômicaRESUMO
The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.
Assuntos
Sistemas de Gerenciamento de Base de Dados , Genômica , Humanos , Internet , Neoplasias/genética , ProteômicaRESUMO
Defective mitochondrial proteins are emerging as major contributors to human disease. Nicotinamide nucleotide transhydrogenase (NNT), a widely expressed mitochondrial protein, has a crucial role in the defence against oxidative stress. NNT variations have recently been reported in patients with familial glucocorticoid deficiency (FGD) and in patients with heart failure. Moreover, knockout animal models suggest that NNT has a major role in diabetes mellitus and obesity. In this study, we used experimental structures of bacterial transhydrogenases to generate a structural model of human NNT (H-NNT). Structure-based analysis allowed the identification of H-NNT residues forming the NAD binding site, the proton canal and the large interaction site on the H-NNT dimer. In addition, we were able to identify key motifs that allow conformational changes adopted by domain III in relation to its functional status, such as the flexible linker between domains II and III and the salt bridge formed by H-NNT Arg882 and Asp830. Moreover, integration of sequence and structure data allowed us to study the structural and functional effect of deleterious amino acid substitutions causing FGD and left ventricular non-compaction cardiomyopathy. In conclusion, interpretation of the function-structure relationship of H-NNT contributes to our understanding of mitochondrial disorders.
Assuntos
Doenças Mitocondriais/genética , Mutação , NADP Trans-Hidrogenase Específica para A ou B/química , NADP Trans-Hidrogenase Específica para A ou B/genética , Sequência de Aminoácidos , Sítios de Ligação , Predisposição Genética para Doença , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , NAD/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , Ligação Proteica , Conformação Proteica , Domínios ProteicosRESUMO
Closely related African trypanosomes cause lethal diseases but display distinct host ranges. Specifically, Trypanosoma brucei brucei causes nagana in livestock but fails to infect humans, while Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause sleeping sickness in humans. T. b. brucei fails to infect humans because it is sensitive to innate immune complexes found in normal human serum known as trypanolytic factor (TLF) 1 and 2; the lytic component is apolipoprotein-L1 in both TLFs. TLF resistance mechanisms of T. b. gambiense and T. b. rhodesiense are now known to arise through either gain or loss-of-function, but our understanding of factors that render T. b. brucei susceptible to lysis by human serum remains incomplete. We conducted a genome-scale RNA interference (RNAi) library screen for reduced sensitivity to human serum. Among only four high-confidence 'hits' were all three genes previously shown to sensitize T. b. brucei to human serum, the haptoglobin-haemoglobin receptor (HpHbR), inhibitor of cysteine peptidase (ICP) and the lysosomal protein, p67, thereby demonstrating the pivotal roles these factors play. The fourth gene identified encodes a predicted protein with eleven trans-membrane domains. Using chemical and genetic approaches, we show that ICP sensitizes T. b. brucei to human serum by modulating the essential cathepsin, CATL, a lysosomal cysteine peptidase. A second cathepsin, CATB, likely to be dispensable for growth in in vitro culture, has little or no impact on human-serum sensitivity. Our findings reveal major and novel determinants of human-serum sensitivity in T. b. brucei. They also shed light on the lysosomal protein-protein interactions that render T. b. brucei exquisitely sensitive to lytic factors in human serum, and indicate that CATL, an important potential drug target, has the capacity to resist these factors.
Assuntos
Proteínas Sanguíneas/fisiologia , Catepsina L/metabolismo , Imunidade Inata , Tripanossomicidas/sangue , Trypanosoma brucei brucei/enzimologia , Catepsina L/genética , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Humanos , Organismos Geneticamente Modificados , Proteólise , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/sangue , Tripanossomíase Africana/imunologiaRESUMO
BACKGROUND: Recurrent tuberculosis is a major health burden and may be due to relapse with the original strain or reinfection with a new strain. METHODS: In a population-based study in northern Malawi, patients with tuberculosis diagnosed from 1996 to 2010 were actively followed after the end of treatment. Whole-genome sequencing with approximately 100-fold coverage was performed on all available cultures. Results of IS6110 restriction fragment-length polymorphism analyses were available for cultures performed up to 2008. RESULTS: Based on our data, a difference of ≤10 single-nucleotide polymorphisms (SNPs) was used to define relapse, and a difference of >100 SNPs was used to define reinfection. There was no evidence of mixed infections among those classified as reinfections. Of 1471 patients, 139 had laboratory-confirmed recurrences: 55 had relapse, and 20 had reinfection; for 64 type of recurrence was unclassified. Almost all relapses occurred in the first 2 years. Human immunodeficiency virus infection was associated with reinfection but not relapse. Relapses were associated with isoniazid resistance, treatment before 2007, and lineage-3 strains. We identified several gene variants associated with relapse. Lineage-2 (Beijing) was overrepresented and lineage-1 underrepresented among the reinfecting strains (P = .004). CONCLUSIONS: While some of the factors determining recurrence depend on the patient and their treatment, differences in the Mycobacterium tuberculosis genome appear to have a role in both relapse and reinfection.
Assuntos
Variação Genética , Genoma Bacteriano/genética , Infecções por HIV/epidemiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/epidemiologia , Adulto , Antituberculosos/uso terapêutico , Estudos de Coortes , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Infecções por HIV/complicações , Infecções por HIV/virologia , Humanos , Isoniazida/uso terapêutico , Malaui/epidemiologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Prevalência , Recidiva , Análise de Sequência de DNA , Tuberculose/tratamento farmacológico , Tuberculose/microbiologiaRESUMO
Burkholderia pseudomallei, the causative agent of melioidosis, has complex and poorly understood extracellular and intracellular lifestyles. We used transposon-directed insertion site sequencing (TraDIS) to retrospectively analyze a transposon library that had previously been screened through a BALB/c mouse model to identify genes important for growth and survival in vivo. This allowed us to identify the insertion sites and phenotypes of negatively selected mutants that were previously overlooked due to technical constraints. All 23 unique genes identified in the original screen were confirmed by TraDIS, and an additional 105 mutants with various degrees of attenuation in vivo were identified. Five of the newly identified genes were chosen for further characterization, and clean, unmarked bpsl2248, tex, rpiR, bpsl1728, and bpss1528 deletion mutants were constructed from the wild-type strain K96243. Each of these mutants was tested in vitro and in vivo to confirm their attenuated phenotypes and investigate the nature of the attenuation. Our results confirm that we have identified new genes important to in vivo virulence with roles in different stages of B. pseudomallei pathogenesis, including extracellular and intracellular survival. Of particular interest, deletion of the transcription accessory protein Tex was shown to be highly attenuating, and the tex mutant was capable of providing protective immunity against challenge with wild-type B. pseudomallei, suggesting that the genes identified in our TraDIS screen have the potential to be investigated as live vaccine candidates.
Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/metabolismo , Melioidose/microbiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Fatores de Virulência/genéticaRESUMO
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population.
Assuntos
Variação Genética , MicroRNAs , RNA Mensageiro/genética , RNA Nucleolar Pequeno , Pequeno RNA não Traduzido/genética , Gordura Subcutânea , Animais , Glicemia , Distribuição da Gordura Corporal , Índice de Massa Corporal , Jejum , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Insulina/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Gordura Subcutânea/metabolismoRESUMO
BACKGROUND: In mammalians, HIF is a master regulator of hypoxia gene expression through direct binding to DNA, while its role in microRNA expression regulation, critical in the hypoxia response, is not elucidated genome wide. Our aim is to investigate in depth the regulation of microRNA expression by hypoxia in the breast cancer cell line MCF-7, establish the relationship between microRNA expression and HIF binding sites, pri-miRNA transcription and microRNA processing gene expression. METHODS: MCF-7 cells were incubated at 1% Oxygen for 16, 32 and 48 h. SiRNA against HIF-1α and HIF-2α were performed as previously published. MicroRNA and mRNA expression were assessed using microRNA microarrays, small RNA sequencing, gene expression microarrays and Real time PCR. The Kraken pipeline was applied for microRNA-seq analysis along with Bioconductor packages. Microarray data was analysed using Limma (Bioconductor), ChIP-seq data were analysed using Gene Set Enrichment Analysis and multiple testing correction applied in all analyses. RESULTS: Hypoxia time course microRNA sequencing data analysis identified 41 microRNAs significantly up- and 28 down-regulated, including hsa-miR-4521, hsa-miR-145-3p and hsa-miR-222-5p reported in conjunction with hypoxia for the first time. Integration of HIF-1α and HIF-2α ChIP-seq data with expression data showed overall association between binding sites and microRNA up-regulation, with hsa-miR-210-3p and microRNAs of miR-27a/23a/24-2 and miR-30b/30d clusters as predominant examples. Moreover the expression of hsa-miR-27a-3p and hsa-miR-24-3p was found positively associated to a hypoxia gene signature in breast cancer. Gene expression analysis showed no full coordination between pri-miRNA and microRNA expression, pointing towards additional levels of regulation. Several transcripts involved in microRNA processing were found regulated by hypoxia, of which DICER (down-regulated) and AGO4 (up-regulated) were HIF dependent. DICER expression was found inversely correlated to hypoxia in breast cancer. CONCLUSIONS: Integrated analysis of microRNA, mRNA and ChIP-seq data in a model cell line supports the hypothesis that microRNA expression under hypoxia is regulated at transcriptional and post-transcriptional level, with the presence of HIF binding sites at microRNA genomic loci associated with up-regulation. The identification of hypoxia and HIF regulated microRNAs relevant for breast cancer is important for our understanding of disease development and design of therapeutic interventions.
Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator 1 Induzível por Hipóxia/genética , MicroRNAs/análise , RNA Mensageiro/análise , Neoplasias da Mama/metabolismo , Hipóxia Celular/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , TranscriptomaRESUMO
Cancer associated fibroblasts (CAF) arising from bone marrow-derived mesenchymal stromal cells (MSC) are prominent in B-precursor acute lymphoblastic leukaemia (B-ALL). We have previously shown that CAF formation is triggered by exposure to reactive oxygen species-inducing chemotherapy and that CAF support chemoresistance by donating mitochondria to the cancer cells, through tunnelling nanotubes. In the present study, we show that exposure of MSC to ALL cell lines, patient-derived xenografts and primary cells or their conditioned media can also trigger CAF formation. Using bulk RNA sequencing in cell lines, we show that the MSC to CAF transition is accompanied by a robust interferon pathway response and we have validated this finding in primary cells. Using confocal microscopy and flow cytometry, we identify the take-up of leukaemia cell-derived mitochondrial dsRNA by MSC as a proximate trigger for the MSC to CAF transition. We show that inhibition of dsRNA formation in ALL cells by treatment with low-dose ethidium or the mitochondrial transcription inhibitor IMT1 or degradation of dsRNA in conditioned media by 100°C exposure ablates the ability of the ALL conditioned media to stimulate MSC to CAF transition. Our data reveal a novel and previously undescribed mechanism by which cancer cells induce a CAF phenotype in stromal cells, showing how B-ALL cells can directly induce the previously described niche-mediated protection within the bone marrow.
RESUMO
Virulence screens have indicated potential roles during Streptococcus pneumoniae infection for the one-carbon metabolism pathway component Fhs and proline synthesis mediated by ProABC. To define how these metabolic pathways affect S. pneumoniae virulence, we have investigated the phenotypes, transcription, and metabolic profiles of Δfhs and ΔproABC mutants. S. pneumoniae capsular serotype 6B BHN418 Δfhs and ΔproABC mutant strains had strongly reduced virulence in mouse sepsis and pneumonia models but could colonize the nasopharynx. Both mutant strains grew normally in complete media but had markedly impaired growth in chemically defined medium, human serum, and human cerebrospinal fluid. The BHN418 ΔproABC strain also had impaired growth under conditions of osmotic and oxidative stress. The virulence role of proABC was strain specific, as the D39 ΔproABC strain could still cause septicemia and grow in serum. Compared to culture in broth, in serum, the BHN418 Δfhs and ΔproABC strains showed considerable derangement in global gene transcription that affected multiple but different metabolic pathways for each mutant strain. Metabolic data suggested that Δfhs had an impaired stringent response, and when cultured in sera, BHN418 Δfhs and ΔproABC were under increased oxidative stress and had altered lipid profiles. Loss of proABC also affected carbohydrate metabolism and the accumulation of peptidoglycan synthesis precursors in the BHN418 but not the D39 background, linking this phenotype to the conditional virulence phenotype. These data identify the S. pneumoniae metabolic functions affected by S. pneumoniae one-carbon metabolism and proline biosynthesis, and the role of these genetic loci for establishing systemic infection.IMPORTANCERapid adaptation to grow within the physiological conditions found in the host environment is an essential but poorly understood virulence requirement for systemic pathogens such as Streptococcus pneumoniae. We have now demonstrated an essential role for the one-carbon metabolism pathway and a conditional role depending on strain background for proline biosynthesis for S. pneumoniae growth in serum or cerebrospinal fluid, and therefore for systemic virulence. RNAseq and metabolomic data demonstrated that the loss of one-carbon metabolism or proline biosynthesis has profound but differing effects on S. pneumoniae metabolism in human serum, identifying the metabolic processes dependent on each pathway during systemic infection. These data provide a more detailed understanding of the adaptations required by systemic bacterial pathogens in order to cause infection and demonstrate that the requirement for some of these adaptations varies between strains from the same species and could therefore underpin strain variations in virulence potential.
RESUMO
Viral clearance, antibody response and the mutagenic effect of molnupiravir has not been elucidated in at-risk populations. Non-hospitalised participants within 5 days of SARS-CoV-2 symptoms randomised to receive molnupiravir (n = 253) or Usual Care (n = 324) were recruited to study viral and antibody dynamics and the effect of molnupiravir on viral whole genome sequence from 1437 viral genomes. Molnupiravir accelerates viral load decline, but virus is detectable by Day 5 in most cases. At Day 14 (9 days post-treatment), molnupiravir is associated with significantly higher viral persistence and significantly lower anti-SARS-CoV-2 spike antibody titres compared to Usual Care. Serial sequencing reveals increased mutagenesis with molnupiravir treatment. Persistence of detectable viral RNA at Day 14 in the molnupiravir group is associated with higher transition mutations following treatment cessation. Viral viability at Day 14 is similar in both groups with post-molnupiravir treated samples cultured up to 9 days post cessation of treatment. The current 5-day molnupiravir course is too short. Longer courses should be tested to reduce the risk of potentially transmissible molnupiravir-mutated variants being generated. Trial registration: ISRCTN30448031.
Assuntos
COVID-19 , Citidina/análogos & derivados , Hidroxilaminas , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Pacientes Ambulatoriais , Formação de Anticorpos , Anticorpos Antivirais , Antivirais/uso terapêuticoRESUMO
BACKGROUND: In animals, microRNAs (miRNA) are important genetic regulators. Animal miRNAs appear to have expanded in conjunction with an escalation in complexity during early bilaterian evolution. Their small size and high-degree of similarity makes them challenging for phylogenetic approaches. Furthermore, genomic locations encoding miRNAs are not clearly defined in many species. A number of studies have looked at the evolution of individual miRNA families. However, we currently lack resources for large-scale analysis of miRNA evolution. RESULTS: We addressed some of these issues in order to analyse the evolution of miRNAs. We perform syntenic and phylogenetic analysis for miRNAs from 80 animal species. We present synteny maps, phylogenies and functional data for miRNAs across these species. These data represent the basis of our analyses and also act as a resource for the community. CONCLUSIONS: We use these data to explore the distribution of miRNAs across phylogenetic space, characterise their birth and death, and examine functional relationships between miRNAs and other genes. These data confirm a number of previously reported findings on a larger scale and also offer novel insights into the evolution of the miRNA repertoire in animals, and it's genomic organization.
Assuntos
Evolução Biológica , MicroRNAs/genética , Animais , Bases de Dados Genéticas , MicroRNAs/classificação , MicroRNAs/metabolismo , Filogenia , Especificidade da EspécieRESUMO
We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two tools: simulations under neutrality or selection, and experimental investigation of two regions identified by the HapMap2 project as putatively selected in human populations. Simulations suggested that neutral and selected regions should be readily distinguished and that it should be possible to localize the selected variant to within 40 kb at least half of the time. Re-sequencing of two ~300 kb regions (chr4:158Mb and chr10:22Mb) lacking known targets of selection in HapMap CHB individuals provided strong evidence for positive selection within each and suggested the micro-RNA gene hsa-miR-548c as the best candidate target in one region, and changes in regulation of the sperm protein gene SPAG6 in the other.