Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 160(4): 798-798.e1, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679767

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are considered to be part of a spectrum. Clinically, FTD patients present with dementia frequently characterized by behavioral and speech problems. ALS patients exhibit alterations of voluntary movements caused by degeneration of motor neurons. Both syndromes can be present within the same family or even in the same person. The genetic findings for both diseases also support the existence of a continuum, with mutations in the same genes being found in patients with FTD, ALS, or FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , Mutação
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082147

RESUMO

The intracellular misfolding and accumulation of alpha-synuclein into structures collectively called Lewy pathology (LP) is a central phenomenon for the pathogenesis of synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Understanding the molecular architecture of LP is crucial for understanding synucleinopathy disease origins and progression. Here we used a technique called biotinylation by antibody recognition (BAR) to label total (BAR-SYN1) and pathological alpha-synuclein (BAR-PSER129) in situ for subsequent mass spectrometry analysis. Results showed superior immunohistochemical detection of LP following the BAR-PSER129 protocol, particularly for fibers and punctate pathology within the striatum and cortex. Mass spectrometry analysis of BAR-PSER129-labeled LP identified 261 significantly enriched proteins in the synucleinopathy brain when compared to nonsynucleinopathy brains. In contrast, BAR-SYN1 did not differentiate between disease and nonsynucleinopathy brains. Pathway analysis of BAR-PSER129-enriched proteins revealed enrichment for 718 pathways; notably, the most significant KEGG pathway was PD, and Gene Ontology (GO) cellular compartments were the vesicle, extracellular vesicle, extracellular exosome, and extracellular organelle. Pathway clustering revealed several superpathways, including metabolism, mitochondria, lysosome, and intracellular vesicle transport. Validation of the BAR-PSER129-identified protein hemoglobin beta (HBB) by immunohistochemistry confirmed the interaction of HBB with PSER129 Lewy neurites and Lewy bodies. In summary, BAR can be used to enrich for LP from formalin-fixed human primary tissues, which allowed the determination of molecular signatures of LP. This technique has broad potential to help understand the phenomenon of LP in primary human tissue and animal models.


Assuntos
Encéfalo/metabolismo , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Globinas beta/metabolismo
4.
Brain ; 146(10): 4077-4087, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37247383

RESUMO

Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-ß and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-ß and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/metabolismo , Doença de Alzheimer/patologia , Doença de Parkinson/patologia , Estudo de Associação Genômica Ampla , Peptídeos beta-Amiloides/metabolismo , Lisossomos/metabolismo
5.
Brain ; 145(4): 1257-1263, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34999780

RESUMO

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Assuntos
Leucodistrofia de Células Globoides , Doença por Corpos de Lewy , Príons , Sinucleinopatias , Encéfalo/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Príons/metabolismo , Esfingolipídeos/metabolismo , alfa-Sinucleína/metabolismo
7.
Neurogenetics ; 23(4): 279-283, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36114914

RESUMO

Dementia with Lewy bodies is a neurodegenerative disease, sharing features with Parkinson's and Alzheimer's diseases. We report a case of a patient dementia with Lewy bodies carrying combined PSEN1 and ATP7B mutations. A man developed dementia with Lewy bodies starting at the age of 60 years. CSF biomarkers were of Alzheimer's disease and DaTSCAN was abnormal. Whole-exome sequencing revealed a heterozygous p.Ile408Thr PSEN1 variant and a homozygous p.Arg616Trp ATP7B variant. This case reinstates the need of considering ATP7B mutations when evaluating a patient with parkinsonism and supports p.Ile408Thr as a pathogenic PSEN1 variant.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Humanos , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/genética , Sequenciamento do Exoma , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Estudos de Associação Genética , Presenilina-1/genética
8.
Mov Disord ; 37(10): 2139-2146, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876425

RESUMO

BACKGROUND: Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE: The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS: Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS: Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS: We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Animais , Distonia/diagnóstico , Distonia/genética , Distúrbios Distônicos/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , Prolina , RNA , Peixe-Zebra/genética
9.
Hum Genomics ; 15(1): 48, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321086

RESUMO

BACKGROUND: Copy number variants (CNVs) include deletions or multiplications spanning genomic regions. These regions vary in size and may span genes known to play a role in human diseases. As examples, duplications and triplications of SNCA have been shown to cause forms of Parkinson's disease, while duplications of APP cause early onset Alzheimer's disease (AD). RESULTS: Here, we performed a systematic analysis of CNVs in a Turkish dementia cohort in order to further characterize the genetic causes of dementia in this population. One hundred twenty-four Turkish individuals, either at risk of dementia due to family history, diagnosed with mild cognitive impairment, AD, or frontotemporal dementia, were whole-genome genotyped and CNVs were detected. We integrated family analysis with a comprehensive assessment of potentially disease-associated CNVs in this Turkish dementia cohort. We also utilized both dementia and non-dementia individuals from the UK Biobank in order to further elucidate the potential role of the identified CNVs in neurodegenerative diseases. We report CNVs overlapping the previously implicated genes ZNF804A, SNORA70B, USP34, XPO1, and a locus on chromosome 9 which includes a cluster of olfactory receptors and ABCA1. Additionally, we also describe novel CNVs potentially associated with dementia, overlapping the genes AFG1L, SNX3, VWDE, and BC039545. CONCLUSIONS: Genotyping data from understudied populations can be utilized to identify copy number variation which may contribute to dementia.


Assuntos
Variações do Número de Cópias de DNA/genética , Demência/genética , Predisposição Genética para Doença , Genômica , Transportador 1 de Cassete de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Demência/patologia , Feminino , Genoma Humano/genética , Genótipo , Humanos , Carioferinas/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Receptores Citoplasmáticos e Nucleares/genética , Nexinas de Classificação/genética , Turquia/epidemiologia , Proteases Específicas de Ubiquitina/genética , Proteína Exportina 1
10.
Eur J Neurol ; 29(5): 1524-1528, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35020242

RESUMO

BACKGROUND AND PURPOSE: TP73 was recently reported to cause amyotrophic lateral sclerosis (ALS). ALS and frontotemporal dementia (FTD) are considered to form part of a continuum. We aimed to investigate whether TP73 variants may be associated with FTD. METHODS: We studied a thoroughly investigated cohort of 65 Portuguese patients with frontotemporal dementia using whole-exome sequencing. The patients had no other known genetic cause for their disease (C9orf72 expansion was also excluded). RESULTS: Of the 65 patients studied, two had rare variants in TP73 (p.Gly605Ser and p.Arg347Trp). Both variants had minor allele frequency <0.001 and were predicted to be pathogenic in silico. The two patients displayed a phenotype that included predominant language impairment, suggestive of non-fluent progressive aphasia. CONCLUSION: We show that two thoroughly studied patients without other known genetic changes harbored TP73 rare variants, which are pathogenic in silico. This adds evidence to support the role of TP73 in the ALS-FTD spectrum, especially in primary progressive aphasia cases.


Assuntos
Esclerose Lateral Amiotrófica , Afasia Primária Progressiva , Demência Frontotemporal , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Afasia Primária Progressiva/genética , Proteína C9orf72/genética , Estudos de Coortes , Demência Frontotemporal/genética , Humanos , Fenótipo , Proteína Supressora de Tumor p53
11.
Acta Neurol Scand ; 146(1): 42-50, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307828

RESUMO

OBJECTIVES: The genetic background of vascular cognitive impairment (VCI) is poorly understood compared to other dementia disorders. The aim of the study was to investigate the genetic background of VCI in a well-characterized Finnish cohort. MATERIALS & METHODS: Whole-exome sequencing (WES) was applied in 45 Finnish VCI patients. Copy-number variant (CNV) analysis using a SNP array was performed in 80 VCI patients. This study also examined the prevalence of variants at the miR-29 binding site of COL4A1 in 73 Finnish VCI patients. RESULTS: In 40% (18/45) of the cases, WES detected possibly causative variants in genes associated with cerebral small vessel disease (CSVD) or other neurological or stroke-related disorders. These variants included HTRA1:c.847G>A p.(Gly283Arg), TREX1:c.1079A>G, p.(Tyr360Cys), COLGALT1:c.1411C>T, p.(Arg471Trp), PRNP: c.713C>T, p.(Pro238Leu), and MTHFR:c.1061G>C, p.(Gly354Ala). Additionally, screening of variants in the 3'UTR of COL4A1 gene in a sub-cohort of 73 VCI patients identified a novel variant c.*36T>A. CNV analysis showed that pathogenic CNVs are uncommon in VCI. CONCLUSIONS: These data support pathogenic roles of variants in HTRA1, TREX1 and in the 3'UTR of COL4A1 in CSVD and VCI, and suggest that vascular pathogenic mechanisms are linked to neurodegeneration, expanding the understanding of the genetic background of VCI.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Demência Vascular , Acidente Vascular Cerebral , Regiões 3' não Traduzidas , Doenças de Pequenos Vasos Cerebrais/complicações , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Demência Vascular/diagnóstico , Demência Vascular/genética , Testes Genéticos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Acidente Vascular Cerebral/complicações
12.
Brain ; 144(4): 1067-1081, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33889936

RESUMO

The majority of genome-wide association studies have been conducted using samples with a broadly European genetic background. As a field, we acknowledge this limitation and the need to increase the diversity of populations studied. A major challenge when designing and conducting such studies is to assimilate large samples sizes so that we attain enough statistical power to detect variants associated with disease, particularly when trying to identify variants with low and rare minor allele frequencies. In this review, we aimed to illustrate the benefits to genetic characterization of Alzheimer's disease, in researching currently understudied populations. This is important for both fair representation of world populations and the translatability of findings. To that end, we conducted a literature search to understand the contributions of studies, on different populations, to Alzheimer's disease genetics. Using both PubMed and Alzforum Mutation Database, we systematically quantified the number of studies reporting variants in known disease-causing genes, in a worldwide manner, and discuss the contributions of research in understudied populations to the identification of novel genetic factors in this disease. Additionally, we compared the effects of genome-wide significant single nucleotide polymorphisms across populations by focusing on loci that show different association profiles between populations (a key example being APOE). Reports of variants in APP, PSEN1 and PSEN2 can initially determine whether patients from a country have been studied for Alzheimer's disease genetics. Most genome-wide significant associations in non-Hispanic white genome-wide association studies do not reach genome-wide significance in such studies of other populations, with some suggesting an opposite effect direction; this is likely due to much smaller sample sizes attained. There are, however, genome-wide significant associations first identified in understudied populations which have yet to be replicated. Familial studies in understudied populations have identified rare, high effect variants, which have been replicated in other populations. This work functions to both highlight how understudied populations have furthered our understanding of Alzheimer's disease genetics, and to help us gauge our progress in understanding the genetic architecture of this disease in all populations.


Assuntos
Doença de Alzheimer/genética , Grupos Minoritários , Humanos
13.
Clin Genet ; 100(1): 79-83, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33682124

RESUMO

Congenital ataxias are a heterogeneous group of disorders characterized by congenital or early-onset ataxia. Here, we describe two siblings with congenital ataxia, who acquired independent gait by age 4 years. After 16 years of follow-up they presented near normal cognition, cerebellar ataxia, mild pyramidal signs, and dystonia. On exome sequencing, a novel homozygous variant (c.1580-18C > G - intron 17) in ATP8A2 was identified. A new acceptor splice site was predicted by bioinformatics tools, and functionally characterized through a minigene assay. Minigene constructs were generated by PCR-amplification of genomic sequences surrounding the variant of interest and cloning into the pCMVdi vector. Altered splicing was evaluated by expressing these constructs in HEK293T cells. The construct with the c.1580-18C > G homozygous variant produced an aberrant transcript, leading to retention of 17 bp of intron 17, by the use of an alternative acceptor splice site, resulting in a premature stop codon by insertion of four amino acids. These results allowed us to establish this as a disease-causing variant and expand ATP8A2-related disorders to include less severe forms of congenital ataxia.


Assuntos
Adenosina Trifosfatases/genética , Ataxia Cerebelar/genética , Variação Genética/genética , Proteínas de Transferência de Fosfolipídeos/genética , Adulto , Linhagem Celular , Códon sem Sentido/genética , Feminino , Células HEK293 , Homozigoto , Humanos , Íntrons/genética , Masculino , Linhagem , Sítios de Splice de RNA/genética , Splicing de RNA/genética
14.
Acta Neuropathol ; 141(4): 471-490, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32740728

RESUMO

The SNCA locus currently has an indisputable role in Parkinson's disease and other synucleinopathies. The role of genetic variability in the other members of the synuclein family (SNCB and SNCG) in disease is far less clear. In this review, we critically assess the pathogenicity, main characteristics, and roles of genetic variants in these genes reported to be causative of synucleinopathies. We also summarize the different association signals identified in the SNCA locus that have been associated with risk for disease. We take a bird's eye view of the variability currently reported in the general population for the three genes and use these data to infer on the potential relationship between each of the genes and human disease.


Assuntos
Sinucleinopatias/genética , Sinucleínas/genética , Animais , Humanos , Doenças Neurodegenerativas/genética
15.
FASEB J ; 34(2): 2436-2450, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907987

RESUMO

Loss-of-function genetic variants of triggering receptor expressed on myeloid cells 2 (TREM2) are linked with an enhanced risk of developing dementias. Microglia, the resident immune cell of the brain, express TREM2, and microglial responses are implicated in dementia pathways. In a normal surveillance state, microglia use oxidative phosphorylation for their energy supply, but rely on the ability to undergo a metabolic switch to glycolysis to allow them to perform rapid plastic responses. We investigated the role of TREM2 on the microglial metabolic function in human patient iPSC-derived microglia expressing loss of function variants in TREM2. We show that these TREM2 variant iPSC-microglia, including the Alzheimer's disease R47H risk variant, exhibit significant metabolic deficits including a reduced mitochondrial respiratory capacity and an inability to perform a glycolytic immunometabolic switch. We determined that dysregulated PPARγ/p38MAPK signaling underlies the observed phenotypic deficits in TREM2 variants and that activation of these pathways can ameliorate the metabolic deficit in these cells and consequently rescue critical microglial cellular function such as ß-Amyloid phagocytosis. These findings have ramifications for microglial focussed-treatments in AD.


Assuntos
Doença de Alzheimer , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas , Mutação com Perda de Função , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Microglia/patologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
16.
Mol Psychiatry ; 25(3): 629-639, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29988083

RESUMO

Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, UK, and USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 alpha-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD.


Assuntos
Proteína ADAM17/genética , Doença de Alzheimer/genética , Proteína ADAM17/metabolismo , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento do Exoma
17.
Eur J Neurol ; 28(8): 2603-2613, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33969597

RESUMO

BACKGROUND AND PURPOSE: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD. METHOD: Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory and radiological data were retrieved and analyzed. RESULTS: The presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1 ± 4.97 years and the mean duration of the disease was 8.9 ± 3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in computed tomography of the brain. Magnetic resonance imaging of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei and periventricular white matter changes in all patients. Symmetrical global atrophy of the brain mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of the hippocampus. Cerebrospinal fluid examination of 10 patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients. CONCLUSION: A combination of white matter changes, enlarged ventricles, atrophy of the caudate nuclei and thinning of the corpus callosum in magnetic resonance imaging strongly suggests NHD in patients with FTD syndrome. Molecular genetic analysis should be performed in suspected cases, and families should receive genetic counseling.


Assuntos
Demência Frontotemporal , Lipodistrofia , Glicoproteínas de Membrana/genética , Osteocondrodisplasias , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda , Adulto , Encéfalo/diagnóstico por imagem , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/genética , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
18.
Neurobiol Dis ; 142: 104946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439597

RESUMO

Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.


Assuntos
Demência Frontotemporal/genética , Doença por Corpos de Lewy/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
19.
Nature ; 505(7484): 550-554, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24336208

RESUMO

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-ß precursor protein (APP) and extracellular Aß42 and Aß40 (the 42- and 40-residue isoforms of the amyloid-ß peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aß42 and Aß40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Fosfolipase D/genética , Negro ou Afro-Americano/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Europa (Continente)/etnologia , Exoma/genética , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/metabolismo , Fosfolipase D/deficiência , Fosfolipase D/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteólise
20.
Neurobiol Dis ; 127: 492-501, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953760

RESUMO

Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson's disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants.


Assuntos
Predisposição Genética para Doença , Variação Genética , Doença por Corpos de Lewy/genética , Bases de Dados Genéticas , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa