Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842500

RESUMO

This article presents the design and implementation of an event-triggered control approach, applied to the leader-following consensus and formation of a group of autonomous micro-aircraft with capabilities of vertical take-off and landing (VTOL-UAVs). The control strategy is based on an inner-outer loop control approach. The inner control law stabilizes the attitude and position of one agent, whereas the outer control follows a virtual leader to achieve position consensus cooperatively through an event-triggered policy. The communication topology uses undirected and connected graphs. With such an event-triggered control, the closed-loop trajectories converge to a compact sphere, centered in the origin of the error space. Furthermore, the minimal inter-sampling time is proven to be below bounded avoiding the Zeno behavior. The formation problem addresses the group of agents to fly in a given shape configuration. The simulation and experimental results highlight the performance of the proposed control strategy.

2.
ISA Trans ; 96: 490-500, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31320142

RESUMO

This work deals with the development of a nonlinear Periodic Event-Triggered Control strategy employed to the consensus of a multi-vehicle autonomous system based on (3,0) mobile robots. First, the existence of the Control Lyapunov Function (CLF) applicable to the consensus problem is proven. This is subsequently used to develop event and feedback functions. The Periodic Event-Triggered Control ensures trajectories boundedness and convergence to consensus while a specific sampling period is provided. Also, the formation problem is addressed as an extension of the presented work. Experimental results show the performance of the proposed control strategy which reduces 99.78% the number of control updates compared to a continuous control law, resulting in energy saving for the information transfer from central control to the mobile robots.

3.
ISA Trans ; 58: 605-13, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26190502

RESUMO

Event-triggered control (ETC) is a sampling strategy that updates the control value only when some events related to the state of the system occurs. It therefore relaxes the periodicity of control updates without deteriorating the closed-loop performance. This paper develops a nonlinear ETC for the stabilization of a (3,0) mobile robot. The construction of an event function and a feedback function is carried out based on the existence of a stabilizing control law and a Control Lyapunov Function (CLF). The event function is dependent on the time derivative of the CLF and the feedback function results from the extension of Sontag's formula, which ensures asymptotic stability, smoothness everywhere and continuity at the equilibrium. Experimental results, compared with a computed torque control, validate the theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa