Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(17): e110784, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859387

RESUMO

The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.


Assuntos
Fator de Indução de Apoptose , Complexo I de Transporte de Elétrons , Proteínas de Transporte da Membrana Mitocondrial , Fator de Indução de Apoptose/metabolismo , Dissulfetos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Transporte Proteico
2.
EMBO J ; 40(21): e108648, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542926

RESUMO

So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.


Assuntos
Adaptação Fisiológica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/patologia , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/deficiência , Complexos Multiproteicos/deficiência , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosforilação Oxidativa
3.
Mol Cell ; 64(1): 148-162, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27642048

RESUMO

Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.


Assuntos
Canais de Cálcio/metabolismo , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Metaloendopeptidases/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Morte Celular , Cerebelo/patologia , Corpo Estriado/patologia , Regulação da Expressão Gênica , Células HEK293 , Hipocampo/patologia , Homeostase/genética , Humanos , Transporte de Íons , Metaloendopeptidases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Neurônios/patologia , Mapeamento de Interação de Proteínas , Transdução de Sinais
4.
Brain ; 145(7): 2602-2616, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35104841

RESUMO

Bi-allelic pathogenic variants in ZBTB11 have been associated with intellectual developmental disorder, autosomal recessive 69 (MRT69; OMIM 618383). We report five patients from three families with novel, bi-allelic variants in ZBTB11. We have expanded the clinical phenotype of MRT69, documenting varied severity of atrophy affecting different brain regions and described combined malonic and methylmalonic aciduria as a biochemical manifestation. As ZBTB11 encodes for a transcriptional regulator, we performeded chromatin immunoprecipitation-sequencing targeting ZBTB11 in fibroblasts from patients and controls. Chromatin immunoprecipitation-sequencing revealed binding of wild-type ZBTB11 to promoters in 238 genes, among which genes encoding proteins involved in mitochondrial functions and RNA processing are over-represented. Mutated ZBTB11 showed reduced binding to 61 of the targeted genes, indicating that the variants act as loss of function. Most of these genes are related to mitochondrial functions. Transcriptome analysis of the patient fibroblasts revealed dysregulation of mitochondrial functions. In addition, we uncovered that reduced binding of the mutated ZBTB11 to ACSF3 leads to decreased ACSF3 transcript level, explaining combined malonic and methylmalonic aciduria. Collectively, these results expand the clinical spectrum of ZBTB11-related neurological disease and give insight into the pathophysiology in which the dysfunctional ZBTB11 affect mitochondrial functions and RNA processing contributing to the neurological and biochemical phenotypes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo , Malformações do Sistema Nervoso , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encéfalo , Humanos , Erros Inatos do Metabolismo/genética
5.
Am J Hum Genet ; 102(4): 685-695, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576219

RESUMO

Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.


Assuntos
Alelos , Perda Auditiva Neurossensorial/genética , Hipoglicemia/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Pré-Escolar , Análise Mutacional de DNA , DNA Mitocondrial/genética , Feminino , Fibroblastos/metabolismo , Perda Auditiva Neurossensorial/complicações , Humanos , Hipoglicemia/complicações , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/complicações , Proteínas Mitocondriais/química , Fosforilação Oxidativa , Subunidades Proteicas/genética , RNA Ribossômico/genética , Proteínas Ribossômicas/química
6.
Genet Med ; 23(9): 1705-1714, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140661

RESUMO

PURPOSE: To investigate monoallelic CLPB variants. Pathogenic variants in many genes cause congenital neutropenia. While most patients exhibit isolated hematological involvement, biallelic CLPB variants underlie a neurological phenotype ranging from nonprogressive intellectual disability to prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, 3-methylglutaconic aciduria, and neutropenia. CLPB was recently shown to be a mitochondrial refoldase; however, the exact function remains elusive. METHODS: We investigated six unrelated probands from four countries in three continents, with neutropenia and a phenotype dominated by epilepsy, developmental issues, and 3-methylglutaconic aciduria with next-generation sequencing. RESULTS: In each individual, we identified one of four different de novo monoallelic missense variants in CLPB. We show that these variants disturb refoldase and to a lesser extent ATPase activity of CLPB in a dominant-negative manner. Complexome profiling in fibroblasts showed CLPB at very high molecular mass comigrating with the prohibitins. In control fibroblasts, HAX1 migrated predominantly as monomer while in patient samples multiple HAX1 peaks were observed at higher molecular masses comigrating with CLPB thus suggesting a longer-lasting interaction between CLPB and HAX1. CONCLUSION: Both biallelic as well as specific monoallelic CLPB variants result in a phenotypic spectrum centered around neurodevelopmental delay, seizures, and neutropenia presumably mediated via HAX1.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Erros Inatos do Metabolismo , Neutropenia , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Deficiência Intelectual/genética , Neutropenia/genética
7.
Am J Hum Genet ; 100(2): 216-227, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28065471

RESUMO

Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.


Assuntos
Cútis Laxa/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Alelos , Sequência de Aminoácidos , Estudos de Casos e Controles , Criança , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Conformação Proteica , Transporte Proteico , Espectrometria de Massas em Tandem
8.
Bioinformatics ; 35(17): 3083-3091, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649188

RESUMO

MOTIVATION: Complexome profiling combines native gel electrophoresis with mass spectrometry to obtain the inventory, composition and abundance of multiprotein assemblies in an organelle. Applying complexome profiling to determine the effect of a mutation on protein complexes requires separating technical and biological variations from the variations caused by that mutation. RESULTS: We have developed the COmplexome Profiling ALignment (COPAL) tool that aligns multiple complexome profiles with each other. It includes the abundance profiles of all proteins on two gels, using a multi-dimensional implementation of the dynamic time warping algorithm to align the gels. Subsequent progressive alignment allows us to align multiple profiles with each other. We tested COPAL on complexome profiles from control mitochondria and from Barth syndrome (BTHS) mitochondria, which have a mutation in tafazzin gene that is involved in remodeling the inner mitochondrial membrane phospholipid cardiolipin. By comparing the variation between BTHS mitochondria and controls with the variation among either, we assessed the effects of BTHS on the abundance profiles of individual proteins. Combining those profiles with gene set enrichment analysis allows detecting significantly affected protein complexes. Most of the significantly affected protein complexes are located in the inner mitochondrial membrane (mitochondrial contact site and cristae organizing system, prohibitins), or are attached to it (the large ribosomal subunit). AVAILABILITY AND IMPLEMENTATION: COPAL is written in python and is available from http://github.com/cmbi/copal. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Síndrome de Barth , Humanos , Espectrometria de Massas , Mitocôndrias , Proteínas Mitocondriais , Mutação
9.
J Inherit Metab Dis ; 43(6): 1382-1391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32418222

RESUMO

Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.


Assuntos
Cútis Laxa/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pele/patologia , Sequência de Aminoácidos , Animais , Criança , Cútis Laxa/patologia , Feminino , Glicosilação , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Linhagem , Fosfatidilinositóis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência
10.
Hum Mol Genet ; 26(13): 2541-2550, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449065

RESUMO

Perrault syndrome (PS) is a rare recessive disorder characterized by ovarian dysgenesis and sensorineural deafness. It is clinically and genetically heterogeneous, and previously mutations have been described in different genes, mostly related to mitochondrial proteostasis. We diagnosed three unrelated females with PS and set out to identify the underlying genetic cause using exome sequencing. We excluded mutations in the known PS genes, but identified a single homozygous mutation in the ERAL1 gene (c.707A > T; p.Asn236Ile). Since ERAL1 protein binds to the mitochondrial 12S rRNA and is involved in the assembly of the small mitochondrial ribosomal subunit, the identified variant represented a likely candidate. In silico analysis of a 3D model for ERAL1 suggested that the mutated residue hinders protein-substrate interactions, potentially affecting its function. On a molecular basis, PS skin fibroblasts had reduced ERAL1 protein levels. Complexome profiling of the cells showed an overall decrease in the levels of assembled small ribosomal subunit, indicating that the ERAL1 variant affects mitochondrial ribosome assembly. Moreover, levels of the 12S rRNA were reduced in the patients, and were rescued by lentiviral expression of wild type ERAL1. At the physiological level, mitochondrial respiration was markedly decreased in PS fibroblasts, confirming disturbed mitochondrial function. Finally, knockdown of the C. elegans ERAL1 homologue E02H1.2 almost completely blocked egg production in worms, mimicking the compromised fertility in PS-affected women. Our cross-species data in patient cells and worms support the hypothesis that mutations in ERAL1 can cause PS and are associated with changes in mitochondrial metabolism.


Assuntos
Proteínas de Ligação ao GTP/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos/genética , Animais , Caenorhabditis elegans/genética , Exoma , Feminino , Proteínas de Ligação ao GTP/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Homozigoto , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Mutação de Sentido Incorreto/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequenciamento do Exoma
11.
Am J Hum Genet ; 99(1): 208-16, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374773

RESUMO

Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação , Adolescente , Adulto , Criança , Complexo I de Transporte de Elétrons/genética , Exercício Físico , Exoma/genética , Teste de Complementação Genética , Heterozigoto , Humanos , Lactente , Masculino , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 112(18): 5685-90, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902503

RESUMO

Mitochondrial proton-pumping NADH:ubiquinone oxidoreductase (respiratory complex I) comprises more than 40 polypeptides and contains eight canonical FeS clusters. The integration of subunits and insertion of cofactors into the nascent complex is a complicated multistep process that is aided by assembly factors. We show that the accessory NUMM subunit of complex I (human NDUFS6) harbors a Zn-binding site and resolve its position by X-ray crystallography. Chromosomal deletion of the NUMM gene or mutation of Zn-binding residues blocked a late step of complex I assembly. An accumulating assembly intermediate lacked accessory subunit N7BM (NDUFA12), whereas a paralog of this subunit, the assembly factor N7BML (NDUFAF2), was found firmly bound instead. EPR spectroscopic analysis and metal content determination after chromatographic purification of the assembly intermediate showed that NUMM is required for insertion or stabilization of FeS cluster N4.


Assuntos
Mitocôndrias/metabolismo , NADH Desidrogenase/química , Zinco/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese , Deleção de Genes , Humanos , Membranas Mitocondriais/metabolismo , Chaperonas Moleculares/química , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Espectrofotometria
14.
Biochim Biophys Acta Bioenerg ; 1858(3): 208-217, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988283

RESUMO

Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues.


Assuntos
Complexo I de Transporte de Elétrons/genética , Evolução Molecular , Mitocôndrias Cardíacas/genética , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Sequência de Aminoácidos/genética , Animais , Bovinos , Complexo I de Transporte de Elétrons/química , Éxons/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Mitocôndrias Cardíacas/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/química
15.
Biochim Biophys Acta ; 1857(7): 980-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27040506

RESUMO

Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Animais , Sítios de Ligação , Ativação Enzimática , Humanos , Ligação Proteica , Conformação Proteica
16.
Biochim Biophys Acta ; 1863(1): 91-101, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477565

RESUMO

We have analyzed the distribution of mitochondrial contact site and cristae organizing system (MICOS) complex proteins and mitochondrial intermembrane space bridging complex (MIB) proteins over (sub)complexes and over species. The MICOS proteins are associated with the formation and maintenance of mitochondrial cristae. Indeed, the presence of MICOS genes in genomes correlates well with the presence of cristae: all cristae containing species have at least one MICOS gene and cristae-less species have none. Mic10 is the most widespread MICOS gene, while Mic60 appears be the oldest one, as it originates in the ancestors of mitochondria, the proteobacteria. In proteobacteria the gene occurs in clusters with genes involved in heme synthesis while the protein has been observed in intracellular membranes of the alphaproteobacterium Rhodobacter sphaeroides. In contrast, Mic23 and Mic27 appear to be the youngest MICOS proteins, as they only occur in opisthokonts. The remaining MICOS proteins, Mic10, Mic19, Mic25 and Mic12, the latter we show to be orthologous to human C19orf70/QIL1, trace back to the root of the eukaryotes. Of the remaining MIB proteins, also DNAJC11 shows a high correlation with the presence of cristae. In mitochondrial protein complexome profiles, the MIB complex occurs as a defined complex and as separate subcomplexes, potentially reflecting various assembly stages. We find three main forms of the complex: A) The MICOS complex, containing all the MICOS proteins, B) a membrane bridging subcomplex, containing in addition SAMM50, MTX2 and the previously uncharacterized MTX3, and C) the complete MIB complex containing in addition DNAJC11 and MTX1.


Assuntos
Evolução Molecular , Proteínas Mitocondriais/genética , Complexos Multiproteicos/genética , Linhagem Celular Tumoral , Humanos
18.
Biochim Biophys Acta ; 1837(1): 73-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23933018

RESUMO

The branched respiratory chain in mitochondria from the halotolerant yeast Debaryomyces hansenii contains the classical complexes I, II, III and IV plus a cyanide-insensitive, AMP-activated, alternative-oxidase (AOX). Two additional alternative oxidoreductases were found in this organism: an alternative NADH dehydrogenase (NDH2e) and a mitochondrial isoform of glycerol-phosphate dehydrogenase (MitGPDH). These monomeric enzymes lack proton pump activity. They are located on the outer face of the inner mitochondrial membrane. NDH2e oxidizes exogenous NADH in a rotenone-insensitive, flavone-sensitive, process. AOX seems to be constitutive; nonetheless, most electrons are transferred to the cytochromic pathway. Respiratory supercomplexes containing complexes I, III and IV in different stoichiometries were detected. Dimeric complex V was also detected. In-gel activity of NADH dehydrogenase, mass spectrometry, and cytochrome c oxidase and ATPase activities led to determine the composition of the putative supercomplexes. Molecular weights were estimated by comparison with those from the yeast Y. lipolytica and they were IV2, I-IV, III2-IV4, V2, I-III2, I-III2-IV, I-III2-IV2, I-III2-IV3 and I-III2-IV4. Binding of the alternative enzymes to supercomplexes was not detected. This is the first report on the structure and organization of the mitochondrial respiratory chain from D. hansenii.


Assuntos
Complexo I de Transporte de Elétrons/química , Transporte de Elétrons , Glicerolfosfato Desidrogenase/química , NADH Desidrogenase/química , Oxirredutases/química , Sequência de Aminoácidos , Respiração Celular/fisiologia , Debaryomyces/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Glicerolfosfato Desidrogenase/fisiologia , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/fisiologia , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
19.
J Bioenerg Biomembr ; 47(6): 477-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26530988

RESUMO

It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ((Sc)MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg(2+), Ca(2+) or phosphate (Pi) close (Sc)MUC, while ATP or a high rate of oxygen consumption open it. We assessed (Sc)MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca(2+)] and/or [Mg(2+)] were needed to close (Sc)MUC or increase ATP synthesis. The Ca(2+)-mediated closure of (Sc)MUC was prevented by high [ATP] while the Mg(2+) or Pi effect was not. When Ca(2+) and Mg(2+) were alternatively added or chelated, (Sc)MUC opened and closed reversibly. Different effects of Ca(2+) vs Mg(2+) effects were probably due to mitochondrial Mg(2+) uptake. Our results suggest that (Sc)MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of (Sc)MUC leads to physiological uncoupling and a consequent decrease in ROS production.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Mitocôndrias/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina
20.
medRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562757

RESUMO

In genetic disease, an accurate expression landscape of disease genes and faithful animal models will enable precise genetic diagnoses and therapeutic discoveries, respectively. We previously discovered that variants in NOS1AP , encoding nitric oxide synthase 1 (NOS1) adaptor protein, cause monogenic nephrotic syndrome (NS). Here, we determined that an intergenic splice product of N OS1AP / Nos1ap and neighboring C1orf226/Gm7694 , which precludes NOS1 binding, is the predominant isoform in mammalian kidney transcriptional and proteomic data. Gm7694 -/- mice, whose allele exclusively disrupts the intergenic product, developed NS phenotypes. In two human NS subjects, we identified causative NOS1AP splice variants, including one predicted to abrogate intergenic splicing but initially misclassified as benign based on the canonical transcript. Finally, by modifying genetic background, we generated a faithful mouse model of NOS1AP -associated NS, which responded to anti-proteinuric treatment. This study highlights the importance of intergenic splicing and a potential treatment avenue in a mendelian disorder.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa