Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 164(1): 43-54, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37490233

RESUMO

INTRODUCTION: Glioblastoma (GBM) is an aggressive primary brain cancer. Lack of effective therapy is related to its highly invasive nature. GBM invasion has been studied with reductionist systems that do not fully recapitulate the cytoarchitecture of the brain. We describe a human-derived brain organotypic model to study the migratory properties of GBM IDH-wild type ex vivo. METHODS: Non-tumor brain samples were obtained from patients undergoing surgery (n = 7). Organotypic brain slices were prepared, and green fluorescent protein (GFP)-labeled primary human GBM IDH-wild type cells (GBM276, GBM612, GBM965) were placed on the organotypic slice. Migration was evaluated via microscopy and immunohistochemistry. RESULTS: After placement, cells migrated towards blood vessels; initially migrating with limited directionality, sending processes in different directions, and increasing their speed upon contact with the vessel. Once merged, migration speed decreased and continued to decrease with time (p < 0.001). After perivascular localization, migration is limited along the blood vessels in both directions. The percentage of cells that contact blood vessels and then continue to migrate along the vessel was 92.5% (- 3.9/ + 2.9)% while the percentage of cells that migrate along the blood vessel and leave was 7.5% (- 2.9/ + 3.9) (95% CI, Clopper-Pearson (exact); n = 256 cells from six organotypic cultures); these percentages are significantly different from the random (50%) null hypothesis (z = 13.6; p < 10-7). Further, cells increase their speed in response to a decrease in oxygen tension from atmospheric normoxia (20% O2) to anoxia (1% O2) (p = 0.033). CONCLUSION: Human organotypic models can accurately study cell migration ex vivo. GBM IDH-wild type cells migrate toward the perivascular space in blood vessels and their migratory parameters change once they contact vascular structures and under hypoxic conditions. This model allows the evaluation of GBM invasion, considering the human brain microenvironment when cells are removed from their native niche after surgery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Encéfalo/patologia , Células Tumorais Cultivadas , Movimento Celular/fisiologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Neurooncol ; 154(1): 51-62, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34232472

RESUMO

INTRODUCTION: Neurosurgeons represent 0.5% of all physicians and currently face a high burden of disease. Physician-scientists are essential to advance the mission of National Academies of Science (NAS) and National Institutes of Health (NIH) through discovery and bench to bedside translation. We investigated trends in NIH neurosurgeon-scientist funding over time as an indicator of physician-scientist workforce training. METHODS: We used NIH Research Portfolio Online Reporting Tools (RePORTER) to extract grants to neurosurgery departments and neurosurgeons from 1993 to 2017. Manual extraction of each individual grant awardee was conducted. RESULTS: After adjusting for U.S. inflation (base year: 1993), NIH funding to neurosurgery departments increased yearly (P < 0.00001). However, neurosurgeon-scientists received significantly less NIH funding compared to scientists (including basic scientists and research only neurosurgeons) (P = 0.09). The ratio of neurosurgeon-scientists to scientists receiving grants was significantly reduced (P = 0.002). Interestingly, the percentage of oncology-related neurosurgery grants significantly increased throughout the study period (P = 0.002). The average number of grants per neurosurgeon-scientists showed an upward trend (P < 0.001); however, the average number of grants for early-career neurosurgeon-scientists, showed a significant downward trend (P = 0.05). CONCLUSION: Over the past 23 years, despite the overall increasing trends in the number of NIH grants awarded to neurosurgery departments overall, the proportion of neurosurgeon-scientists that were awarded NIH grants compared to scientists demonstrates a declining trend. This observed shift is disproportionate in the number of NIH grants awarded to senior level compared to early-career neurosurgeon-scientists, with more funding allocated towards neurosurgical-oncology-related grants.


Assuntos
Pesquisa Biomédica , National Institutes of Health (U.S.) , Neurocirurgiões , Apoio à Pesquisa como Assunto , Pesquisa Biomédica/economia , Mão de Obra em Saúde , Humanos , Oncologia , Neurologia , Neurocirurgiões/economia , Apoio à Pesquisa como Assunto/tendências , Estados Unidos
4.
Cell Mol Life Sci ; 76(18): 3553-3570, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101934

RESUMO

Neural stem cells present in the subventricular zone (SVZ), the largest neurogenic niche of the mammalian brain, are able to self-renew as well as generate neural progenitor cells (NPCs). NPCs are highly migratory and traverse the rostral migratory stream (RMS) to the olfactory bulb, where they terminally differentiate into mature interneurons. NPCs from the SVZ are some of the few cells in the CNS that migrate long distances during adulthood. The migratory process of NPCs is highly regulated by intracellular pathway activation and signaling from the surrounding microenvironment. It involves modulation of cell volume, cytoskeletal rearrangement, and isolation from compact extracellular matrix. In malignant brain tumors including high-grade gliomas, there are cells called brain tumor stem cells (BTSCs) with similar stem cell characteristics to NPCs but with uncontrolled cell proliferation and contribute to tumor initiation capacity, tumor progression, invasion, and tumor maintenance. These BTSCs are resistant to chemotherapy and radiotherapy, and their presence is believed to lead to tumor recurrence at distal sites from the original tumor location, principally due to their high migratory capacity. BTSCs are able to invade the brain parenchyma by utilizing many of the migratory mechanisms used by NPCs. However, they have an increased ability to infiltrate the tight brain parenchyma and utilize brain structures such as myelin tracts and blood vessels as migratory paths. In this article, we summarize recent findings on the mechanisms of cellular migration that overlap between NPCs and BTSCs. A better understanding of the intersection between NPCs and BTSCs will to provide a better comprehension of the BTSCs' invasive capacity and the molecular mechanisms that govern their migration and eventually lead to the development of new therapies to improve the prognosis of patients with malignant gliomas.


Assuntos
Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neurais/citologia , Neurogênese , Nicho de Células-Tronco
5.
Biophys J ; 117(7): 1167-1178, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495447

RESUMO

Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas , Dispositivos Lab-On-A-Chip , Resistência ao Cisalhamento , Estresse Mecânico , Explosões , Humanos , Pressão
6.
J Cell Sci ; 130(15): 2459-2467, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596239

RESUMO

Endogenous electric fields modulate many physiological processes by promoting directional migration, a process known as galvanotaxis. Despite the importance of galvanotaxis in development and disease, the mechanism by which cells sense and migrate directionally in an electric field remains unknown. Here, we show that electrophoresis of cell surface heparan sulfate (HS) critically regulates this process. HS was found to be localized at the anode-facing side in fetal neural progenitor cells (fNPCs), fNPC-derived astrocytes and brain tumor-initiating cells (BTICs), regardless of their direction of galvanotaxis. Enzymatic removal of HS and other sulfated glycosaminoglycans significantly abolished or reversed the cathodic response seen in fNPCs and BTICs. Furthermore, Slit2, a chemorepulsive ligand, was identified to be colocalized with HS in forming a ligand gradient across cellular membranes. Using both imaging and genetic modification, we propose a novel mechanism for galvanotaxis in which electrophoretic localization of HS establishes cell polarity by functioning as a co-receptor and provides repulsive guidance through Slit-Robo signaling.


Assuntos
Membrana Celular/química , Movimento Celular , Eletroforese , Heparitina Sulfato/química , Neuroglia/metabolismo , Linhagem Celular Tumoral , Humanos , Neuroglia/citologia
7.
Stem Cells ; 35(7): 1860-1865, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28406573

RESUMO

Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ventrículos Laterais/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Receptores Imunológicos/genética , Animais , Movimento Celular , Feto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Eminência Mediana/citologia , Eminência Mediana/crescimento & desenvolvimento , Eminência Mediana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Transdução de Sinais , Proteínas Roundabout
8.
J Biol Chem ; 289(47): 32742-56, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288800

RESUMO

It is increasingly important to understand the molecular basis for the plasticity of neoplastic cells and their capacity to transition between differentiated and stemlike phenotypes. Kruppel-like factor-9 (KLF9), a member of the large KLF transcription factor family, has emerged as a regulator of oncogenesis, cell differentiation, and neural development; however, the molecular basis for the diverse contextual functions of KLF9 remains unclear. This study focused on the functions of KLF9 in human glioblastoma stemlike cells. We established for the first time a genome-wide map of KLF9-regulated targets in human glioblastoma stemlike cells and show that KLF9 functions as a transcriptional repressor and thereby regulates multiple signaling pathways involved in oncogenesis and stem cell regulation. A detailed analysis of one such pathway, integrin signaling, showed that the capacity of KLF9 to inhibit glioblastoma cell stemness and tumorigenicity requires ITGA6 repression. These findings enhance our understanding of the transcriptional networks underlying cancer cell stemness and differentiation and identify KLF9-regulated molecular targets applicable to cancer therapeutics.


Assuntos
Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Integrina alfa6/genética , Fatores de Transcrição Kruppel-Like/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Integrina alfa6/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos SCID , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Carga Tumoral/genética
9.
Stem Cells ; 32(1): 59-69, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24038623

RESUMO

Radiation is a common tool in the treatment of brain tumors that induces neurological deficits as a side effect. Some of these deficits appear to be related to the impact of radiation on the neurogenic niches, producing a drastic decrease in the proliferative capacity of these regions. In the adult mammalian brain, the subventricular zone (SVZ) of the lateral ventricles is the main neurogenic niche. Neural stem/precursor cells (NSCs) within the SVZ play an important role in brain repair following injuries. However, the irradiated NSCs' ability to respond to damage has not been previously elucidated. In this study, we evaluated the effects of localized radiation on the SVZ ability to respond to a lysolecithin-induced demyelination of the striatum. We demonstrated that the proliferation rate of the irradiated SVZ was increased after brain damage and that residual NSCs were reactivated. The irradiated SVZ had an expansion of doublecortin positive cells that appeared to migrate from the lateral ventricles toward the demyelinated striatum, where newly generated oligodendrocytes were found. In addition, in the absence of demyelinating damage, remaining cells in the irradiated SVZ appeared to repopulate the neurogenic niche a year post-radiation. These findings support the hypothesis that NSCs are radioresistant and can respond to a brain injury, recovering the neurogenic niche. A more complete understanding of the effects that localized radiation has on the SVZ may lead to improvement of the current protocols used in the radiotherapy of cancer.


Assuntos
Ventrículos Cerebrais/efeitos da radiação , Doenças Desmielinizantes/metabolismo , Células-Tronco Neurais/efeitos da radiação , Animais , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos da radiação , Movimento Celular/fisiologia , Movimento Celular/efeitos da radiação , Proliferação de Células , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Doenças Desmielinizantes/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Células-Tronco Neurais/citologia
10.
PLoS Biol ; 10(5): e1001320, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570591

RESUMO

Glioblastoma (GB) is a highly invasive and lethal brain tumor due to its universal recurrence. Although it has been suggested that the electroneutral Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) can play a role in glioma cell migration, the precise mechanism by which this ion transporter contributes to GB aggressiveness remains poorly understood. Here, we focused on the role of NKCC1 in the invasion of human primary glioma cells in vitro and in vivo. NKCC1 expression levels were significantly higher in GB and anaplastic astrocytoma tissues than in grade II glioma and normal cortex. Pharmacological inhibition and shRNA-mediated knockdown of NKCC1 expression led to decreased cell migration and invasion in vitro and in vivo. Surprisingly, knockdown of NKCC1 in glioma cells resulted in the formation of significantly larger focal adhesions and cell traction forces that were approximately 40% lower than control cells. Epidermal growth factor (EGF), which promotes migration of glioma cells, increased the phosphorylation of NKCC1 through a PI3K-dependant mechanism. This finding is potentially related to WNK kinases. Taken together, our findings suggest that NKCC1 modulates migration of glioma cells by two distinct mechanisms: (1) through the regulation of focal adhesion dynamics and cell contractility and (2) through regulation of cell volume through ion transport. Due to the ubiquitous expression of NKCC1 in mammalian tissues, its regulation by WNK kinases may serve as new therapeutic targets for GB aggressiveness and can be exploited by other highly invasive neoplasms.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular , Adesões Focais/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias Encefálicas/metabolismo , Bumetanida/farmacologia , Tamanho Celular , Clonagem Molecular , Imunofluorescência , Adesões Focais/metabolismo , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioma/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto
11.
Pituitary ; 18(1): 31-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24402129

RESUMO

PURPOSE: Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary. METHODS: The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially. RESULTS: GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (p < 0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (p < 0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (p < 0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke's remnant, the putative pituitary stem cell niche, and in corticotropes. CONCLUSION: Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis.


Assuntos
Adenoma/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Hipófise/metabolismo , Hipófise/fisiopatologia , Neoplasias Hipofisárias/fisiopatologia , Adulto , Idoso , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
12.
Adv Exp Med Biol ; 853: 1-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25895704

RESUMO

The subventricular zone of the lateral ventricles (SVZ) is the largest source of neural stem cells (NSCs) in the adult mammalian brain. Newly generated neuroblasts from the SVZ form cellular chains that migrate through the rostral migratory stream (RMS) into the olfactory bulb (OB), where they become mature neurons. Migration through the RMS is a highly regulated process of intrinsic and extrinsic factors, orchestrated to achieve direction and integration of neuroblasts into OB circuitry. These factors include internal cytoskeletal and volume regulators, extracellular matrix proteins, and chemoattractant and chemorepellent proteins. All these molecules direct the cells away from the SVZ, through the RMS, and into the OB guaranteeing their correct integration. Following brain injury, some neuroblasts escape the RMS and migrate into the lesion site to participate in regeneration, a phenomenon that is also observed with brain tumors. This review focuses on factors that regulate the migration of SVZ precursor cells in the healthy and pathologic brain. A better understanding of the factors that control the movement of newly generated cells may be crucial for improving the use of NSC-replacement therapy for specific neurological diseases.


Assuntos
Lesões Encefálicas/patologia , Movimento Celular/fisiologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Adulto , Animais , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nicho de Células-Tronco
13.
Glia ; 62(5): 790-803, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677590

RESUMO

Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.


Assuntos
Envelhecimento/fisiologia , Astrócitos/fisiologia , Epêndima/citologia , Epêndima/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Animais , Astrócitos/ultraestrutura , Diferenciação Celular/fisiologia , Proliferação de Células , Epêndima/ultraestrutura , Ventrículos Laterais/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/ultraestrutura , Neurogênese/fisiologia
14.
Proc Natl Acad Sci U S A ; 108(24): 9951-6, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628563

RESUMO

The tyrosine kinase c-Met promotes the formation and malignant progression of multiple cancers. It is well known that c-Met hyperactivation increases tumorigenicity and tumor cell resistance to DNA damaging agents, properties associated with tumor-initiating stem cells. However, a link between c-Met signaling and the formation and/or maintenance of neoplastic stem cells has not been previously identified. Here, we show that c-Met is activated and functional in glioblastoma (GBM) neurospheres enriched for glioblastoma tumor-initiating stem cells and that c-Met expression/function correlates with stem cell marker expression and the neoplastic stem cell phenotype in glioblastoma neurospheres and clinical glioblastoma specimens. c-Met activation was found to induce the expression of reprogramming transcription factors (RFs) known to support embryonic stem cells and induce differentiated cells to form pluripotent stem (iPS) cells, and c-Met activation counteracted the effects of forced differentiation in glioblastoma neurospheres. Expression of the reprogramming transcription factor Nanog by glioblastoma cells is shown to mediate the ability of c-Met to induce the stem cell characteristics of neurosphere formation and neurosphere cell self-renewal. These findings show that c-Met enhances the population of glioblastoma stem cells (GBM SCs) via a mechanism requiring Nanog and potentially other c-Met-responsive reprogramming transcription factors.


Assuntos
Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Antígeno AC133 , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Reprogramação Celular , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Indóis/farmacologia , Camundongos , Camundongos SCID , Proteína Homeobox Nanog , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Fenótipo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Sulfonamidas/farmacologia , Transplante Heterólogo , Células Tumorais Cultivadas
15.
Mayo Clin Proc ; 99(2): 229-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309935

RESUMO

OBJECTIVE: To establish a neurologic disorder-driven biospecimen repository to bridge the operating room with the basic science laboratory and to generate a feedback cycle of increased institutional and national collaborations, federal funding, and human clinical trials. METHODS: Patients were prospectively enrolled from April 2017 to July 2022. Tissue, blood, cerebrospinal fluid, bone marrow aspirate, and adipose tissue were collected whenever surgically safe. Detailed clinical, imaging, and surgical information was collected. Neoplastic and nonneoplastic samples were categorized and diagnosed in accordance with current World Health Organization classifications and current standard practices for surgical pathology at the time of surgery. RESULTS: A total of 11,700 different specimens from 813 unique patients have been collected, with 14.2% and 8.5% of patients representing ethnic and racial minorities, respectively. These include samples from a total of 463 unique patients with a primary central nervous system tumor, 88 with metastasis to the central nervous system, and 262 with nonneoplastic diagnoses. Cerebrospinal fluid and adipose tissue dedicated banks with samples from 130 and 16 unique patients, respectively, have also been established. Translational efforts have led to 42 new active basic research projects; 4 completed and 6 active National Institutes of Health-funded projects; and 2 investigational new drug and 5 potential Food and Drug Administration-approved phase 0/1 human clinical trials, including 2 investigator initiated and 3 industry sponsored. CONCLUSION: We established a comprehensive biobank with detailed notation with broad potential that has helped us to transform our practice of research and patient care and allowed us to grow in research and clinical trials in addition to providing a source of tissue for new discoveries.


Assuntos
Bancos de Espécimes Biológicos , Salas Cirúrgicas , Humanos
16.
Mol Aspects Med ; 91: 101167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36577547

RESUMO

Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.


Assuntos
Neoplasias Encefálicas , Exossomos , Vesículas Extracelulares , Glioblastoma , Glioma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Vesículas Extracelulares/metabolismo , Glioma/metabolismo , Exossomos/metabolismo , Microambiente Tumoral
17.
Methods Mol Biol ; 2572: 117-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36161412

RESUMO

Glioblastoma (GBM) is the most common and dismal primary brain tumor. Unfortunately, despite multidisciplinary treatment, most patients will perish approximately 15 months after diagnosis. For this reason, there is an urgent need to improve our understanding of GBM tumor biology and develop novel therapies that can achieve better clinical outcomes. In this setting, three-dimensional tumor models have risen as more appropriate preclinical tools when compared to traditional cell cultures, given that two-dimensional (2D) cultures have failed to accurately recapitulate tumor biology and translate preclinical findings into patient benefits. Three-dimensional cultures using neurospheres, organoids, and organotypic better resemble original tumor genetic and epigenetic profiles, maintaining tumor microenvironment characteristics and mimicking cell-cell and cell-matrix interactions. This chapter summarizes our methods to generate well-characterized glioblastoma neurospheres, organoids, and organotypics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Experimentais , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Organoides/patologia , Microambiente Tumoral
18.
J Neurosurg Spine ; 38(4): 481-493, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585863

RESUMO

OBJECTIVE: The vertebral column is the most common site for skeletal metastasis, often leading to debilitating pain and weakness. Metastatic cancer has unique genetic drivers that potentiate tumorigenicity. There is an unmet need for novel targeted therapy in patients with spinal metastatic disease. METHODS: The authors assessed the effect of verteporfin-induced yes-associated protein (YAP) inhibition on spine metastatic cell tumorigenicity and radiation sensitivity in vitro. Animal studies used a subcutaneous xenograft mouse model to assess the use of systemic intraperitoneal verteporfin (IP-VP) and intratumoral verteporfin microparticles (IT-VP) to inhibit the tumorigenicity of lung and breast spinal metastatic tumors from primary patient-derived tissue. RESULTS: Verteporfin led to a dose-dependent decrease in migration, clonogenicity, and cell viability via inhibition of YAP and downstream effectors cyclin D1, CTGF, TOP2A, ANDRD1, MCL-1, FOSL2, KIF14, and KIF23. This was confirmed with knockdown of YAP. Verteporfin has an additive response when combined with radiation, and knockdown of YAP rendered cells more sensitive to radiation. The addition of verteporfin to YAP knockdown cells did not significantly alter migration, clonogenicity, or cell viability. IP-VP and IT-VP led to diminished tumor growth (p < 0.0001), especially when combined with radiation (p < 0.0001). Tissue analysis revealed diminished expression of YAP (p < 0.0001), MCL-1 (p < 0.0001), and Ki-67 (p < 0.0001) in tissue from verteporfin-treated tumors compared with vehicle-treated tumors. CONCLUSIONS: This is the first study to demonstrate that verteporfin-mediated inhibition of YAP leads to diminished tumorigenicity in lung and breast spinal metastatic cancer cells. Targeting of YAP with verteporfin offers promising results that could be translated to human clinical trials.


Assuntos
Neoplasias da Mama , Fatores de Transcrição , Humanos , Animais , Camundongos , Feminino , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Pulmão/metabolismo , Proliferação de Células
19.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662251

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially due to subventricular zone (SVZ) contact. Despite this, crosstalk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. Additionally, GBM brain tumor initiating cells (BTICs) increase expression of CTSB upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Finally, we show LV-proximal CTSB upregulation in patients, showing the relevance of this crosstalk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM. Highlights: Periventricular GBM is more malignant and disrupts neurogenesis in a rodent model.Cell-specific proteomics elucidates tumor-promoting crosstalk between GBM and NPCs.NPCs induce upregulated CTSB expression in GBM, promoting tumor progression.GBM stalls neurogenesis and promotes NPC senescence via CTSB.

20.
Stem Cell Res Ther ; 14(1): 289, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798772

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) have a dynamic secretome that plays a critical role in tissue repair and regeneration. However, studying the MSC secretome in mixed-culture disease models remains challenging. This study aimed to develop a mutant methionyl-tRNA synthetase-based toolkit (MetRSL274G) to selectively profile secreted proteins from MSCs in mixed-culture systems and demonstrate its potential for investigating MSC responses to pathological stimulation. METHODS: We used CRISPR/Cas9 homology-directed repair to stably integrate MetRSL274G into cells, enabling the incorporation of the non-canonical amino acid, azidonorleucine (ANL), and facilitating selective protein isolation using click chemistry. MetRSL274G was integrated into both in H4 cells and induced pluripotent stem cells (iPSCs) for a series of proof-of-concept studies. Following iPSC differentiation into induced-MSCs, we validated their identity and co-cultured MetRSL274G-expressing iMSCs with naïve or lipopolysaccharide (LPS)-treated THP-1 cells. We then profiled the iMSC secretome using antibody arrays. RESULTS: Our results showed successful integration of MetRSL274G into targeted cells, allowing specific isolation of proteins from mixed-culture environments. We also demonstrated that the secretome of MetRSL274G-expressing iMSCs can be differentiated from that of THP-1 cells in co-culture and is altered when co-cultured with LPS-treated THP-1 cells compared to naïve THP-1 cells. CONCLUSIONS: The MetRSL274G-based toolkit we have generated enables selective profiling of the MSC secretome in mixed-culture disease models. This approach has broad applications for examining not only MSC responses to models of pathological conditions, but any other cell type that can be differentiated from iPSCs. This can potentially reveal novel MSC-mediated repair mechanisms and advancing our understanding of tissue regeneration processes.


Assuntos
Células-Tronco Mesenquimais , Metionina tRNA Ligase , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Lipopolissacarídeos , Secretoma , Células-Tronco Mesenquimais/metabolismo , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa