Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 121(6): 1607-1619, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435510

RESUMO

Since 2012, a massive invasion of the three-spined stickleback (Gasterosteus aculeatus) has taken place into the pelagic area of Lake Constance. This species, which had previously been restricted to the littoral zone, is now the dominant pelagic fish and the previously dominant whitefish (Coregonus wartmanni) has suffered severe reductions in growth and recruitment. In this study, in total, 2871 sticklebacks were collected via monthly sessions over a 4-year period in pelagic and benthic areas of Lake Constance and examined for signs of infection with Schistocephalus solidus, a parasite known to be potentially fatal. The infection risk to sticklebacks increases throughout the course of the year and is size- and sex-dependent. Habitat has only a marginal impact. All parasite-induced harm is imparted after stickleback spawning and parental care is over. The results did not support the hypothesis that the invasion of the pelagic area might be driven by parasite-avoiding behaviour. Furthermore, the impact of the parasite is likely to be limited to post-reproductive adults, thereby ensuring stable reproduction of the hosts despite high rates of transmission and mortality. In consequence, stickleback stock development is independent of S. solidus infection, leading to secure coexistence of host and parasite even at extraordinary high host levels.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Salmonidae , Smegmamorpha , Animais , Infecções por Cestoides/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia
2.
PLoS One ; 16(8): e0255497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339467

RESUMO

The three-spined stickleback Gasterosteus aculeatus invaded Lake Contance in the 1940s and expanded in large numbers from an exclusively shoreline habitat into the pelagic zone in 2012. Stickleback abundance is very high in the pelagic zone in winter near the spawning time of pelagic whitefish Coregonus wartmanni, and it is hypothesized that this is triggered by the opportunity to consume whitefish eggs. Field sampling has qualitatively confirmed predation of whitefish eggs by stickleback, but quantification has proven difficult due to stormy conditions that limit sampling. One fundamental unknown is if freshwater stickleback, known as visual feeders, can successfully find and eat whitefish eggs during twilight and night when whitefish spawn. It is also unknown how long eggs can be identified in stomachs following ingestion, which could limit efforts to quantify egg predation through stomach content analysis. To answer these questions, 144 individuals were given the opportunity to feed on whitefish roe under daylight, twilight, and darkness in controlled conditions. The results showed that stickleback can ingest as many as 100 whitefish eggs under any light conditions, and some individuals even consumed maximum numbers in complete darkness. Furthermore, eggs could be unambiguously identified in the stomach 24 hours after consumption. Whitefish eggs have 28% more energy content than the main diet of sticklebacks (zooplankton) based on bomb-calorimetric measurements, underlining the potential benefits of consuming eggs. Based on experimental results and estimates of stickleback abundance and total egg production, stickleback could potentially consume substantial proportions of the total eggs produced even if relatively few sticklebacks consume eggs. Given the evidence that stickleback can feed on eggs during nighttime spawning and may thereby hamper recruitment, future studies aimed at quantifying actual egg predation and resulting effects on the whitefish population are urgently needed.


Assuntos
Dieta/veterinária , Ovos/análise , Luz , Comportamento Predatório , Salmonidae/fisiologia , Estações do Ano , Smegmamorpha/fisiologia , Animais , Ecossistema
3.
PLoS One ; 16(8): e0256427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437615

RESUMO

Predator-prey interactions play a key life history role, as animals cope with changing predation risk and opportunities to hunt prey. It has recently been shown that the hunting success of sticklebacks (Gasterosteus aculeatus) targeting fish larvae is dependent on both the size of the prey and the prior exposure of its species to stickleback predation. The purpose of the current study was to identify the behavioural predator-prey interactions explaining the success or failure of sticklebacks hunting larvae of three potential prey species [roach (Rutilus rutilus), perch (Perca fluviatilis) and whitefish (Coregonus wartmannii)] in a 3D environment. Trials were carried out for each prey species at four different size classes in a standardised laboratory setup and were recorded using a slow motion, stereo camera setup. 75 predator-prey interactions including both failed and successful hunts were subject to the analysis. 3D track analysis indicated that sticklebacks applied different strategies. Prey with less complex predator escape responses, i.e. whitefish larvae, were hunted using a direct but stealthy approach ending in a lunge, while the behaviourally more complex roach and perch larvae were hunted with a faster approach. A multivariate logistic regression identified that slow average speed and acceleration of the prey in the initial stages of the hunt increased the probability of stickleback success. Furthermore, predators adjusted their swimming direction more often when hunting larger whitefish compared to smaller whitefish. The results suggest that appropriate and adequately timed avoidance behaviours, which vary between prey species and ontogenetic stages, significantly increase the chances of outmanoeuvring and escaping stickleback predation. Small whitefish larvae can reach similar levels of swimming performance compared to older conspecifics, but display ineffective anti-predator behaviours, resulting in higher hunting success for sticklebacks. Thus, the development of appropriate anti-predator behaviours depending on size appears to be the crucial factor to escaping predation.


Assuntos
Cyprinidae/fisiologia , Imageamento Tridimensional , Percas/fisiologia , Comportamento Predatório/fisiologia , Salmonidae/fisiologia , Smegmamorpha/fisiologia , Animais , Larva/fisiologia , Funções Verossimilhança , Modelos Logísticos , Análise Multivariada
4.
Sci Rep ; 11(1): 10520, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006900

RESUMO

Monitoring fish populations in large, deep water bodies by conventional capture methodologies requires intensive fishing effort and often causes mass mortality of fish. Thus, it can be difficult to collect sufficient data using capture methods for understanding fine scale community dynamics associated with issues such as climate change or species invasion. Hydroacoustic monitoring is an alternative, less invasive technology that can collect higher resolution data over large temporal and spatial scales. Monitoring multiple species with hydroacoustics, however, usually requires conventional sampling to provide species level information. The ability to identify the species identity of similar-sized individuals using only hydroacoustic data would greatly expand monitoring capabilities and further reduce the need for conventional sampling. In this study, wideband hydroacoustic technology was used in a mesocosm experiment to differentiate between free swimming, similar-sized individuals of two swim-bladdered species: whitefish (Coregonus wartmanni) and stickleback (Gasterosteus aculeatus). Individual targets were identified in echograms and variation in wideband acoustic responses among individuals, across different orientations, and between species was quantified and visually examined. Random forest classification was then used to classify individual targets of known species identity, and had an accuracy of 73.4% for the testing dataset. The results show that species can be identified with reasonable accuracy using wideband hydroacoustics. It is expected that further mesocosm and field studies will help determine capabilities and limitations for classifying additional species and monitoring fish communities. Hydroacoustic species differentiation may offer novel possibilities for fisheries managers and scientists, marking the next crucial step in non-invasive fish monitoring.


Assuntos
Acústica , Salmonidae/fisiologia , Smegmamorpha/fisiologia , Animais , Ecossistema , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa