Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Clin Microbiol ; 62(6): e0010324, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785446

RESUMO

The monkeypox virus (MPXV) outbreak, primarily endemic to Africa, has spread globally, with Brazil reporting the second-highest number of cases. The emergence of MPXV in non-endemic areas has raised concerns, particularly due to the co-circulation of other exanthematous viruses such as varicella-zoster virus (VZV) and molluscum contagiosum virus (MOCV). To perform an accurate differential diagnosis of MPXV during the ongoing outbreak in Minas Gerais, Brazil, a 5PLEX qPCR assay targeting orthopoxviruses (OPV), VZV, and MOCV was used to retrospectively analyze all clinical samples that tested negative for MPXV in the initial screening conducted at Funed. In summary, our study analyzed 1,175 clinical samples received from patients suspected of MPXV infection and found a positivity rate of 33.8% (397 samples) for MPXV using the non-variola qPCR assay. Testing the 778 MPXV-negative clinical samples using the 5PLEX qPCR assay revealed that 174 clinical samples (22.36%) tested positive for VZV. MOCV DNA was detected in 13 and other OPV in 3 clinical samples. The sequencing of randomly selected amplified clinical samples confirmed the initial molecular diagnosis. Analysis of patient profiles revealed a significant difference in the median age between groups testing positive for MPXV and VZV and a male predominance in MPXV cases. The geographic distribution of positive cases was concentrated in the most populous mesoregions of Minas Gerais state. This study highlights the challenges posed by emerging infectious diseases. It emphasizes the importance of epidemiological surveillance and accurate diagnosis in enabling timely responses for public health policies and appropriate medical care. IMPORTANCE: Brazil ranks second in the number of cases during the global monkeypox epidemic. The study, conducted in Minas Gerais, the second most populous state in Brazil with over 20 million inhabitants, utilized differential diagnostics, revealing a significant number of positive cases for other exanthematous viruses and emphasizing the need for accurate diagnoses. During the study, we were able to assess the co-circulation of other viruses alongside monkeypox, including varicella-zoster virus, molluscum contagiosum virus, and other orthopoxviruses. The significance of the research is underscored by the concentration of positive cases in populous areas, highlighting the challenges posed by emerging infectious diseases. This demographic context further amplifies the importance of the research in guiding public health policies and medical interventions, given the substantial population at risk. The study not only addresses a global concern but also holds critical implications for a state with such a large population and geographic expanse within Brazil. Overall, the study emphasizes the pivotal role of surveillance and precise diagnosis in guiding effective public health responses and ensuring appropriate medical interventions.


Assuntos
Surtos de Doenças , Humanos , Brasil/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Adulto , Diagnóstico Diferencial , Criança , Adolescente , Mpox/diagnóstico , Mpox/epidemiologia , Mpox/virologia , Adulto Jovem , Pré-Escolar , Pessoa de Meia-Idade , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/isolamento & purificação , Lactente , Idoso , Exantema/virologia , Exantema/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real
2.
Genes (Basel) ; 15(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062701

RESUMO

Acute febrile illness (AFI) and severe neurological disorders (SNDs) often present diagnostic challenges due to their potential origins from a wide range of infectious agents. Nanopore metagenomics is emerging as a powerful tool for identifying the microorganisms potentially responsible for these undiagnosed clinical cases. In this study, we aim to shed light on the etiological agents underlying AFI and SND cases that conventional diagnostic methods have not been able to fully elucidate. Our approach involved analyzing samples from fourteen hospitalized patients using a comprehensive nanopore metagenomic approach. This process included RNA extraction and enrichment using the SMART-9N protocol, followed by nanopore sequencing. Subsequent steps involved quality control, host DNA/cDNA removal, de novo genome assembly, and taxonomic classification. Our findings in AFI cases revealed a spectrum of disease-associated microbes, including Escherichia coli, Streptococcus sp., Human Immunodeficiency Virus 1 (Subtype B), and Human Pegivirus. Similarly, SND cases revealed the presence of pathogens such as Escherichia coli, Clostridium sp., and Dengue virus type 2 (Genotype-II lineage). This study employed a metagenomic analysis method, demonstrating its efficiency and adaptability in pathogen identification. Our investigation successfully identified pathogens likely associated with AFI and SNDs, underscoring the feasibility of retrieving near-complete genomes from RNA viruses. These findings offer promising prospects for advancing our understanding and control of infectious diseases, by facilitating detailed genomic analysis which is critical for developing targeted interventions and therapeutic strategies.


Assuntos
Metagenômica , Sequenciamento por Nanoporos , Humanos , Metagenômica/métodos , Sequenciamento por Nanoporos/métodos , Masculino , Feminino , Doenças do Sistema Nervoso/microbiologia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/virologia , Adulto , Pessoa de Meia-Idade , Nanoporos , Idoso , Metagenoma/genética , Febre/microbiologia , Febre/virologia , Escherichia coli/genética
3.
Viruses ; 16(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39459936

RESUMO

This study examines a case involving a 7-year-old child who developed dengue symptoms following Qdenga vaccination. Despite initial negative diagnostic results, molecular analysis confirmed an infection with DENV4. Next-generation sequencing detected viral RNA from both DENV2 and DENV4 serotypes, which were identified as vaccine-derived strains using specific primers. Phylogenetic analysis further confirmed that these sequences belonged to the Qdenga vaccine rather than circulating wild-type viruses. This case underscores the critical need for precise diagnostic interpretation in vaccinated individuals to avoid misdiagnosis and to strengthen public health surveillance. A comprehensive understanding of vaccine-induced viremia is essential for refining dengue surveillance, improving diagnostic accuracy, and informing public health strategies in endemic regions.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Viral , Humanos , Dengue/diagnóstico , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Vírus da Dengue/classificação , Criança , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , RNA Viral/genética , Vacinação , Masculino , Sorogrupo
4.
Pathogens ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921757

RESUMO

The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experiencing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais (MG), social media was used to optimize an entomological survey aimed at identifying vectors and viral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae. aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analyses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity for viral detection. These findings emphasize the urgent need for innovative vector studies and control strategies, as well as interdisciplinary approaches in public health interventions.

5.
Microorganisms ; 12(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39338420

RESUMO

Brazil is one of the countries most affected by COVID-19, with the highest number of deaths recorded. Brazilian Health Institutions have reported four main peaks of positive COVID-19 cases. The last two waves were characterized by the emergence of the VOC Omicron and its sublineages. This study aimed to conduct a retrospective surveillance study illustrating the emergence, dissemination, and diversification of the VOC Omicron in 15 regional health units (RHUs) in MG, the second most populous state in Brazil, by combining epidemiological and genomic data. A total of 5643 confirmed positive COVID-19 samples were genotyped using the panels TaqMan SARS-CoV-2 Mutation and 4Plex SC2/VOC Bio-Manguinhos to define mutations classifying the BA.1, BA.2, BA.4, and BA.5 sublineages. While sublineages BA.1 and BA.2 were more prevalent during the third wave, BA.4 and BA.5 dominated the fourth wave in the state. Epidemiological and viral genome data suggest that age and vaccination with booster doses were the main factors related to clinical outcomes, reducing the number of deaths, irrespective of the Omicron sublineages. Complete genome sequencing of 253 positive samples confirmed the circulation of the BA.1, BA.2, BA.4, and BA.5 subvariants, and phylogenomic analysis demonstrated that the VOC Omicron was introduced through multiple international events, followed by transmission within the state of MG. In addition to the four subvariants, other lineages have been identified at low frequency, including BQ.1.1 and XAG. This integrative study reinforces that the evolution of Omicron sublineages was the most significant factor driving the highest peaks of positive COVID-19 cases without an increase in more severe cases, prevented by vaccination boosters.

6.
J Virol Methods ; 317: 114742, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116586

RESUMO

The pandemic caused by COVID-19 and the emergence of new variants of SARS-CoV-2 have generated clinical and epidemiological impacts on a global scale. The use of strategies for monitoring viral circulation and identifying mutations in genomic regions involved in host interaction are important measures to mitigate viral dissemination and reduce its likely complications on population health. In this context, the objective of this work was to explore the potential of high-resolution melting (HRM) analysis combined with one-step real-time reverse transcription PCR in a closed-tube system, as a fast and convenient method of screening for SARS-CoV-2 mutations with possible implications on host-pathogen interactions. The HRM analyses allowed the distinction of the Gamma, Zeta, Alpha, Delta, and Omicron variants against the predecessors (B.1.1.28, B.1.1.33) of occurrence in Brazil. It is concluded that the molecular tool standardized here has the potential to optimize the genomic surveillance of SARS-CoV-2, and could be adapted for genomic surveillance of other pathogens, due to its ability to detect, prior to sequencing, samples suggestive of new variants, selecting them more assertively and earlier for whole genome sequencing when compared to random screening.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Genômica , Reação em Cadeia da Polimerase em Tempo Real , Mutação
7.
Sci Adv ; 9(35): eadg9204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656782

RESUMO

Despite the considerable morbidity and mortality of yellow fever virus (YFV) infections in Brazil, our understanding of disease outbreaks is hampered by limited viral genomic data. Here, through a combination of phylogenetic and epidemiological models, we reconstructed the recent transmission history of YFV within different epidemic seasons in Brazil. A suitability index based on the highly domesticated Aedes aegypti was able to capture the seasonality of reported human infections. Spatial modeling revealed spatial hotspots with both past reporting and low vaccination coverage, which coincided with many of the largest urban centers in the Southeast. Phylodynamic analysis unraveled the circulation of three distinct lineages and provided proof of the directionality of a known spatial corridor that connects the endemic North with the extra-Amazonian basin. This study illustrates that genomics linked with eco-epidemiology can provide new insights into the landscape of YFV transmission, augmenting traditional approaches to infectious disease surveillance and control.


Assuntos
Febre Amarela , Vírus da Febre Amarela , Humanos , Vírus da Febre Amarela/genética , Filogenia , Brasil/epidemiologia , Febre Amarela/epidemiologia , Surtos de Doenças , Genômica
8.
Front Mol Biosci ; 9: 1001508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310605

RESUMO

The biological activity of antimicrobial peptides and proteins is closely related to their structural aspects and is sensitive to certain post-translational modifications such as glycosylation, lipidation and PEGylation. However, PEGylation of protein and peptide drugs has expanded in recent years due to the reduction of their toxicity. Due to their size, the PEGylation process can either preserve or compromise the overall structure of these biopolymers and their biological properties. The antimicrobial peptide LyeTx I-bcys was synthesized by Fmoc strategy and coupled to polyethylene glycol 2.0 kDa. The conjugates were purified by HPLC and characterized by MALDI-ToF-MS analysis. Microbiological assays with LyeTx I-bcys and LyeTx I-bPEG were performed against Staphylococcus aureus (ATCC 33591) and Escherichia coli (ATCC 25922) in liquid medium. MIC values of 2.0 and 1.0 µM for LyeTx I-bcys and 8.0 and 4.0 µM for LyeTx I-bPEG were observed against S. aureus and E. coli, respectively. PEGylation of LyeTx I-bcys (LyeTx I-bPEG) decreased the cytotoxicity determined by MTT method for VERO cells compared to the non-PEGylated peptide. In addition, structural and biophysical studies were performed to evaluate the effects of PEGylation on the nature of peptide-membrane interactions. Surface Plasmon Resonance experiments showed that LyeTx I-b binds to anionic membranes with an association constant twice higher than the PEGylated form. The three-dimensional NMR structures of LyeTx I-bcys and LyeTx I-bPEG were determined and compared with the LyeTx I-b structure, and the hydrodynamic diameter and zeta potential of POPC:POPG vesicles were similar upon the addition of both peptides. The mPEG-MAL conjugation of LyeTx I-bcys gave epimers, and it, together with LyeTx I-bPEG, showed clear α-helical profiles. While LyeTx I-bcys showed no significant change in amphipathicity compared to LyeTx I-b, LyeTx I-bPEG was found to have a slightly less clear separation between hydrophilic and hydrophobic faces. However, the similar conformational freedom of LyeTx I-b and LyeTx I-bPEG suggests that PEGylation does not cause significant structural changes. Overall, our structural and biophysical studies indicate that the PEGylation does not alter the mode of peptide interaction and maintains antimicrobial activity while minimizing tissue toxicity, which confirmed previous results obtained in vivo. Interestingly, significantly improved proteolytic resistance to trypsin and proteinase K was observed after PEGylation.

9.
Nat Microbiol ; 7(9): 1490-1500, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982313

RESUMO

The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil , Genômica , Humanos
10.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560750

RESUMO

Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March-April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG's 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , Estudos Retrospectivos , COVID-19/epidemiologia , SARS-CoV-2 , Genômica
11.
medRxiv ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35378755

RESUMO

Brazil has experienced some of the highest numbers of COVID-19 cases and deaths globally and from May 2021 made Latin America a pandemic epicenter. Although SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, important gaps remain in our understanding of virus transmission dynamics at the national scale. Here, we describe the genomic epidemiology of SARS-CoV-2 using near-full genomes sampled from 27 Brazilian states and a bordering country - Paraguay. We show that the early stage of the pandemic in Brazil was characterised by the co-circulation of multiple viral lineages, linked to multiple importations predominantly from Europe, and subsequently characterized by large local transmission clusters. As the epidemic progressed under an absence of effective restriction measures, there was a local emergence and onward international spread of Variants of Concern (VOC) and Variants Under Monitoring (VUM), including Gamma (P.1) and Zeta (P.2). In addition, we provide a preliminary genomic overview of the epidemic in Paraguay, showing evidence of importation from Brazil. These data reinforce the usefulness and need for the implementation of widespread genomic surveillance in South America as a toolkit for pandemic monitoring that provides a means to follow the real-time spread of emerging SARS-CoV-2 variants with possible implications for public health and immunization strategies.

12.
Am J Infect Control ; 48(3): 267-274, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630921

RESUMO

BACKGROUND: Biofilm removal is a challenge during surgical instrument processing. We analyzed the time required for Staphylococcus epidermidis to form biofilms on surgical instruments, and how cleaning methods removed them. METHODS: Different areas (ratchet, shank, and jaw) of straight crile forceps were contaminated by soaking in Tryptic Soy Broth containing 106 colony forming units (CFU)/mL of S epidermidis for 1, 2, 4, 6, 8, and 12 hours. S epidermidis adhesion and removal, after manual or automated ultrasonic cleaning, was evaluated by microbiological culture and scanning electron microscopy. RESULTS: Microbial load increased with time (101-102 CFU/cm2 after 1 hour; 104 CFU/cm2 after 12 hours). Exopolysaccharide was detected after 2 hours and gradually increased thereafter. Bacterial load was reduced by 1-2 log10 after manual cleaning and 1-3 log10 after automated cleaning, but biofilms were not completely eliminated. In general, bacterial load was lower in shank fragments. This difference was significant at 6 hours. CONCLUSIONS: Rapid adhesion of S epidermidis and exopolysaccharide formation was observed on surgical instruments. Automated cleaning was more effective than manual cleaning, but neither method removed biofilms completely. The precleaning conditions and the forceps design are critical factors in processing quality.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Desinfecção/métodos , Recuperação e Remediação Ambiental/métodos , Infecções Estafilocócicas/prevenção & controle , Staphylococcus epidermidis/efeitos dos fármacos , Instrumentos Cirúrgicos/microbiologia , Automação/métodos , Carga Bacteriana/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia
13.
Front Microbiol ; 11: 578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425894

RESUMO

The antimicrobial resistance (AMR) crisis urgently requires countermeasures for reducing the dissemination of plasmid-borne resistance genes. Of particular concern are opportunistic pathogens of Enterobacteriaceae. One innovative approach is the CRISPR-Cas9 system which has recently been used for plasmid curing in defined strains of Escherichia coli. Here we exploited this system further under challenging conditions: by targeting the bla TEM- 1 AMR gene located on a high-copy plasmid (i.e., 100-300 copies/cell) and by directly tackling bla TEM- 1-positive clinical isolates. Upon CRISPR-Cas9 insertion into a model strain of E. coli harboring bla TEM- 1 on the plasmid pSB1A2, the plasmid number and, accordingly, the bla TEM- 1 gene expression decreased but did not become extinct in a subpopulation of CRISPR-Cas9 treated bacteria. Sequence alterations in bla TEM- 1 were observed, likely resulting in a dysfunction of the gene product. As a consequence, a full reversal to an antibiotic sensitive phenotype was achieved, despite plasmid maintenance. In a clinical isolate of E. coli, plasmid clearance and simultaneous re-sensitization to five beta-lactams was possible. Reusability of antibiotics could be confirmed by rescuing larvae of Galleria mellonella infected with CRISPR-Cas9-treated E. coli, as opposed to infection with the unmodified clinical isolate. The drug sensitivity levels could also be increased in a clinical isolate of Enterobacter hormaechei and to a lesser extent in Klebsiella variicola, both of which harbored additional resistance genes affecting beta-lactams. The data show that targeting drug resistance genes is encouraging even when facing high-copy plasmids. In clinical isolates, the simultaneous interference with multiple genes mediating overlapping drug resistance might be the clue for successful phenotype reversal.

14.
Arch Oral Biol ; 111: 104641, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927406

RESUMO

OBJECTIVES: The polymerization of adhesive systems is incomplete and the residual monomers that have been released have a cytotoxic capacity. Some teeth develop into pulp necrosis after composite resin restorations. Considering frequent pulpal inflammation in response to cariogenic bacteria, substances released from the patches could affect the cells of the inflammatory infiltrate and interfere with the mechanisms of defense against microorganisms and protection of pulpal tissue. The aim of this study was to evaluate the effect of substances released by different resinous adhesive systems on cell viability and cytokine expression by human monocytes stimulated in vitro with Streptococcus mutans. DESIGN: Peripheral blood mononuclear cells from 10 healthy subjects were stimulated with S. mutans and then incubated with supernatants obtained from the Single Bond Universal (SBU) or Clearfil SE Bond (CSEB) adhesive systems for eight hours. Staining with Annexin V and 7AAD for analysis of apoptosis were performed and detection of monocytes expressing cytokines IL-1α, IL-6, IL-8, IL-10, IL-12 and TNF-α were performed by flow cytometry. RESULTS: No treatment significantly affected apoptosis in monocytes. SBU supernatant increased the frequency of monocytes expressing IL-8 and decreased the monocytes expressing IL-10. Considering S. mutans-stimulated cells, while SBU increased the frequency of IL-8+ monocytes, CSEB reduced the frequency of IL-6 and TNF-α positive monocytes. CONCLUSIONS: Products released from SBU seem to induce proinflammatory effects on monocytes while those from CSEB show an anti-inflammatory outcome. These effects may interfere in the control of cytokine-mediated immunoinflammatory pulp reactions, both in the presence and absence of stimulation by cariogenic bacteria.


Assuntos
Monócitos , Streptococcus mutans , Resinas Compostas , Citocinas , Cimentos Dentários , Humanos , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa
15.
Rev Lat Am Enfermagem ; 27: e3211, 2019.
Artigo em Inglês, Português, Espanhol | MEDLINE | ID: mdl-31826156

RESUMO

OBJECTIVE: to evaluate the potential contamination of enzymatic detergent from its reuse and to identify the microbiological profile in the solution used to clean gastrointestinal endoscopic devices. METHOD: cross-sectional study based on microbiological analysis of 76 aliquots of 19 different enzymatic detergent solutions used to clean endoscopic devices. The aliquots were homogenized, subjected to Millipore® 0.45 µm membrane filtration and the presumptive identification of microorganisms was performed by biochemical-physiological methods according to previously established specific bacterial groups that are of clinical and epidemiological relevance. RESULTS: the mean values, as well as the standard deviation and the median, of the enzymatic detergent microbial load increased as the solution was reused. There was a significant difference between the means of after first use and after fifth reuse. A total of 97 microorganisms were identified, with predominance of the coagulase-negative Staphylococcus, Pseudomonas spp., Klebsiella spp., Enterobacter spp. genus, and Escherichia coli species. CONCLUSION: the reuse of the enzymatic detergent solution is a risk to the safe processing of endoscopic devices, evidenced by its contamination with pathogenic potential microorganisms, since the enzymatic detergent has no bactericidal property and can contribute as an important source for outbreaks in patients under such procedures.


Assuntos
Detergentes/efeitos adversos , Contaminação de Equipamentos , Gastroscópios/efeitos adversos , Gastroscópios/microbiologia , Carga Bacteriana , Estudos Transversais , Detergentes/farmacologia , Transmissão de Doença Infecciosa , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Controle de Infecções
18.
Artigo em Português | Arca: Repositório institucional da Fiocruz | ID: arc-60822
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa