Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 48(5): 1296-307, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25871918

RESUMO

Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.


Assuntos
Polímeros/química , Polímeros/síntese química , Ciclização , Estrutura Molecular
2.
Anal Bioanal Chem ; 405(28): 8981-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23877179

RESUMO

Polymers capable of dynamic bonding/debonding reactions are of great interest in modern day research. Potential applications can be found in the fields of self-healing materials or printable networks. Since temperature is often used as a stimulus for triggering reversible bonding reactions, an analysis operating at elevated temperatures is very useful for the in situ investigation of the reaction mechanism, as unwanted side effects can be minimized when performing the analyses at the same temperature at which the reactions occur. A temperature-dependent size exclusion chromatographic system (TD SEC) has been optimized for investigating the kinetics of retro Diels-Alder-based depolymerization of Diels-Alder polymers. The changing molecular weight distribution of the analyzed polymers during depolymerization gives valuable quantitative information on the kinetics of the reactions. Adequate data interpretation methods were developed for the correct evaluation of the chromatograms. The results are confirmed by high-temperature dynamic light scattering, thermogravimetric analysis, and time-resolved nuclear magnetic resonance spectroscopy at high temperatures. In addition, the SEC system and column material stability under application conditions were assessed using thermoanalysis methods, infrared spectroscopy, nitrogen physisorption, and scanning electron microscopy. The findings demonstrate that the system is stable and, thus, we can reliably characterize such dynamically bonding/debonding systems with TD SEC.


Assuntos
Polímeros/química , Cromatografia em Gel , Cinética , Estrutura Molecular , Temperatura
3.
Angew Chem Int Ed Engl ; 52(2): 762-6, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23090883

RESUMO

Making light work of RAFT conjugation: a non-activated RAFT agent at the end of RAFT polymers can readily be coupled with ortho-quinodimethanes (photoenols) in a photo-triggered Diels-Alder reaction under mild conditions without catalyst. The method is universal and opens the door for the conjugation of a large number of RAFT-prepared polymers with photoenol-functionalized (macro)molecules. (RAFT=reversible addition-fragmentation chain transfer.).

4.
J Mol Biol ; 319(5): 1279-90, 2002 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-12079364

RESUMO

The primary component of amyloid plaque in the brains of Alzheimer's patients is the 42 residue amyloid-beta-peptide (Abeta42). Although the amino acid residue sequence of Abeta42 is known, the molecular determinants of Abeta amyloidogenesis have not been elucidated. To facilitate an unbiased search for the sequence determinants of Abeta aggregation, we developed a genetic screen that couples a readily observable phenotype in E. coli to the ability of a mutation in Abeta42 to reduce aggregation. The screen is based on our finding that fusions of the wild-type Abeta42 sequence to green fluorescent protein (GFP) form insoluble aggregates in which GFP is inactive. Cells expressing such fusions do not fluoresce. To isolate variants of Abeta42 with reduced tendencies to aggregate, we constructed and screened libraries of Abeta42-GFP fusions in which the sequence of Abeta42 was mutated randomly. Cells expressing GFP fusions to soluble (non-aggregating) variants of Abeta42 exhibit green fluorescence. Implementation of this screen enabled the isolation of 36 variants of Abeta42 with reduced tendencies to aggregate. The sequences of most of these variants are consistent with previous models implicating hydrophobic regions as determinants of Abeta42 aggregation. Some of the variants, however, contain amino acid substitutions not implicated in pre-existing models of Abeta amyloidogenesis.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Mutação/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Viés , Sítios de Ligação , Dicroísmo Circular , Vermelho Congo , Fluorescência , Proteínas de Fluorescência Verde , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fragmentos de Peptídeos/química , Ligação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade
5.
Macromolecules ; 42(2): 502-511, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20046223

RESUMO

As part of an ongoing effort to develop biocompatible, biodegradable conducting polymers, we report here the synthesis and characterization of a novel copolymer, 5,5"'bishydroxymethyl-3,3"'-dimethyl-2,2':5',2":5",2"'-quaterthiophene-co-adipic acid polyester (QAPE). This system was designed so as to incorporate alternating electroactive quaterthiophene units and biodegradable ester units into one macromolecular framework, while allowing for facile preparation of the polymer via a polycondensation reaction. In agreement with the design expectations, the ester groups were found to be incorporated into the polymer between the quaterthiophene subunits, as inferred from standard chemical and spectroscopic analyses. QAPE exhibited redox activity as detected by cyclic voltammetry and a new red-shifted absorption peak upon doping, providing support for the notion that the quaterthiophene units maintain electroactivity after incorporation into the QAPE polymer framework. The degradation, likely through surface erosion, of this polymer in the presence of cholesterol esterase was confirmed by the detection of a fluorescence signal at wavelengths corresponding to the quaterthiophene subunit and comparisons to appropriate controls. In vitro cytocompatability studies, carried out over 48 h, indicate that the QAPE polymer is nontoxic to Schwann cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa