Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7841): 207-210, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33442041

RESUMO

Magnetars are neutron stars with extremely strong magnetic fields (1013 to 1015 gauss)1,2, which episodically emit X-ray bursts approximately 100 milliseconds long and with energies of 1040 to 1041 erg. Occasionally, they also produce extremely bright and energetic giant flares, which begin with a short (roughly 0.2 seconds), intense flash, followed by fainter, longer-lasting emission that is modulated by the spin period of the magnetar3,4 (typically 2 to 12 seconds). Over the past 40 years, only three such flares have been observed in our local group of galaxies3-6, and in all cases the extreme intensity of the flares caused the detectors to saturate. It has been proposed that extragalactic giant flares are probably a subset7-11 of short γ-ray bursts, given that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, whereas the initial bright flash is readily observable out to distances of around 10 to 20 million parsecs. Here we report X-ray and γ-ray observations of the γ-ray burst GRB 200415A, which has a rapid onset, very fast time variability, flat spectra and substantial sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extragalactic magnetar12, given that GRB 200415A is directionally associated13 with the galaxy NGC 253 (roughly 3.5 million parsecs away). The detection of three-megaelectronvolt photons provides evidence for the relativistic motion of the emitting plasma. Radiation from such rapidly moving gas around a rotating magnetar may have generated the rapid spectral evolution that we observe.

2.
Phys Rev Lett ; 121(24): 241101, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608723

RESUMO

The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with ∼3.7σ significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55±0.23 and 1.86±0.15.

3.
Phys Rev Lett ; 118(9): 091103, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306280

RESUMO

The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

4.
Phys Rev Lett ; 116(16): 161101, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152783

RESUMO

We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12} GeV^{-1} for ALP masses 0.5≲m_{a}≲5 neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe.

5.
Astrophys J ; 863(2)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35027772

RESUMO

We use joint observations by the Neil Gehrels Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveal that LAT non-detections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the non-detected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1-100 GeV energy range considered for this analysis.

6.
Astrophys J ; 784(2)2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34646038

RESUMO

Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles-axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratio test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.

7.
Science ; 338(6113): 1445-8, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239730

RESUMO

Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa