Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(2): 172-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163145

RESUMO

Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.


Assuntos
Retina , Segmento Externo da Célula Bastonete , Segmento Externo da Célula Bastonete/metabolismo , Segmento Externo da Célula Bastonete/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo
2.
J Struct Biol ; 216(3): 108108, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944401

RESUMO

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a âˆ¼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a âˆ¼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining âˆ¼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.

3.
FASEB J ; 34(10): 13918-13934, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860273

RESUMO

Interphotoreceptor retinoid-binding protein (IRBP) is a highly expressed protein secreted by rod and cone photoreceptors that has major roles in photoreceptor homeostasis as well as retinoid and polyunsaturated fatty acid transport between the neural retina and retinal pigment epithelium. Despite two crystal structures reported on fragments of IRBP and decades of research, the overall structure of IRBP and function within the visual cycle remain unsolved. Here, we studied the structure of native bovine IRBP in complex with a monoclonal antibody (mAb5) by cryo-electron microscopy, revealing the tertiary and quaternary structure at sufficient resolution to clearly identify the complex components. Complementary mass spectrometry experiments revealed the structure and locations of N-linked carbohydrate post-translational modifications. This work provides insight into the structure of IRBP, displaying an elongated, flexible three-dimensional architecture not seen among other retinoid-binding proteins. This work is the first step in elucidation of the function of this enigmatic protein.


Assuntos
Proteínas do Olho/química , Proteínas de Ligação ao Retinol/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Complexo Antígeno-Anticorpo/química , Bovinos , Microscopia Crioeletrônica , Proteínas do Olho/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação ao Retinol/imunologia , Imagem Individual de Molécula
4.
J Biol Chem ; 294(15): 6082-6093, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30770468

RESUMO

The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.


Assuntos
Opsinas dos Cones/química , Modelos Moleculares , Retinaldeído/química , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Retinaldeído/metabolismo
5.
J Biol Chem ; 294(39): 14215-14230, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399513

RESUMO

Imaging of rod photoreceptor outer-segment disc membranes by atomic force microscopy and cryo-electron tomography has revealed that the visual pigment rhodopsin, a prototypical class A G protein-coupled receptor (GPCR), can organize as rows of dimers. GPCR dimerization and oligomerization offer possibilities for allosteric regulation of GPCR activity, but the detailed structures and mechanism remain elusive. In this investigation, we made use of the high rhodopsin density in the native disc membranes and of a bifunctional cross-linker that preserves the native rhodopsin arrangement by covalently tethering rhodopsins via Lys residue side chains. We purified cross-linked rhodopsin dimers and reconstituted them into nanodiscs for cryo-EM analysis. We present cryo-EM structures of the cross-linked rhodopsin dimer as well as a rhodopsin dimer reconstituted into nanodiscs from purified monomers. We demonstrate the presence of a preferential 2-fold symmetrical dimerization interface mediated by transmembrane helix 1 and the cytoplasmic helix 8 of rhodopsin. We confirmed this dimer interface by double electron-electron resonance measurements of spin-labeled rhodopsin. We propose that this interface and the arrangement of two protomers is a prerequisite for the formation of the observed rows of dimers. We anticipate that the approach outlined here could be extended to other GPCRs or membrane receptors to better understand specific receptor dimerization mechanisms.


Assuntos
Nanopartículas/química , Multimerização Proteica , Rodopsina/química , Animais , Bovinos , Microscopia Crioeletrônica , Células HEK293 , Humanos , Domínios Proteicos , Rodopsina/ultraestrutura
6.
FASEB J ; 33(8): 9526-9539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121099

RESUMO

The classic concept that GPCRs function as monomers has been challenged by the emerging evidence of GPCR dimerization and oligomerization. Rhodopsin (Rh) is the only GPCR whose native oligomeric arrangement was revealed by atomic force microscopy demonstrating that Rh exists as a dimer. However, the role of Rh dimerization in retinal physiology is currently unknown. In this study, we identified econazole and sulconazole, two small molecules that disrupt Rh dimer contacts, by implementing a cell-based high-throughput screening assay. Racemic mixtures of identified lead compounds were separated and tested for their stereospecific binding to Rh using UV-visible spectroscopy and intrinsic fluorescence of tryptophan (Trp) 265 after illumination. By following the changes in UV-visible spectra and Trp265 fluorescence in vitro, we found that binding of R-econazole modulates the formation of Meta III and quenches the intrinsic fluorescence of Trp265. In addition, electrophysiological ex vivo recording revealed that R-econazole slows photoresponse kinetics, whereas S-econazole decreased the sensitivity of rods without effecting the kinetics. Thus, this study contributes new methodology to identify compounds that disrupt the dimerization of GPCRs in general and validates the first active compounds that disrupt the Rh dimer specifically.-Getter, T., Gulati, S., Zimmerman, R., Chen, Y., Vinberg, F., Palczewski, K. Stereospecific modulation of dimeric rhodopsin.


Assuntos
Rodopsina/química , Rodopsina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Econazol/farmacologia , Eletrofisiologia , Humanos , Imidazóis/farmacologia , Immunoblotting , Cinética , Multimerização Proteica/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 114(13): E2608-E2615, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289214

RESUMO

Vertebrate rhodopsin (Rh) contains 11-cis-retinal as a chromophore to convert light energy into visual signals. On absorption of light, 11-cis-retinal is isomerized to all-trans-retinal, constituting a one-way reaction that activates transducin (Gt) followed by chromophore release. Here we report that bovine Rh, regenerated instead with a six-carbon-ring retinal chromophore featuring a C11=C12 double bond locked in its cis conformation (Rh6mr), employs an atypical isomerization mechanism by converting 11-cis to an 11,13-dicis configuration for prolonged Gt activation. Time-dependent UV-vis spectroscopy, HPLC, and molecular mechanics analyses revealed an atypical thermal reisomerization of the 11,13-dicis to the 11-cis configuration on a slow timescale, which enables Rh6mr to function in a photocyclic manner similar to that of microbial Rhs. With this photocyclic behavior, Rh6mr repeatedly recruits and activates Gt in response to light stimuli, making it an excellent candidate for optogenetic tools based on retinal analog-bound vertebrate Rhs. Overall, these comprehensive structure-function studies unveil a unique photocyclic mechanism of Rh activation by an 11-cis-to-11,13-dicis isomerization.


Assuntos
Rodopsina/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Isomerismo , Processos Fotoquímicos , Rodopsina/fisiologia , Rodopsina/efeitos da radiação
8.
Energy (Oxf) ; 1952020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32055100

RESUMO

This study presents a screening-level analysis of the impacts of climate change on electricity transmission and distribution infrastructure of the U.S. In particular, the model identifies changes in performance and longevity of physical infrastructure such as power poles and transformers, and quantifies these impacts in economic terms. This analysis was evaluated for the contiguous U.S, using five general circulation models (GCMs) under two greenhouse gas emission scenarios, to analyze changes in damage and cost from the baseline period to the end of the century with three different adaptation strategies. Total infrastructure costs were found to rise considerably, with annual climate change expenditures increasing by as much as 25%. The results demonstrate that climate impacts will likely be substantial, though this analysis only captures a portion of the total potential impacts. A proactive adaptation strategy resulted in the expected costs of climate change being reduced by as much as 50% by 2090, compared to a scenario without adaptation. Impacts vary across the contiguous U.S. with the highest impacts in parts of the Southeast and Northwest. Improvements and extensions to this analysis would help better inform climate resiliency policies and utility-level planning for the future.

9.
J Biol Chem ; 292(26): 10983-10997, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487362

RESUMO

Phototransduction is initiated when the absorption of light converts the 11-cis-retinal chromophore to its all-trans configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11-cis-retinal is continuously regenerated from its all-trans conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11-cis-retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11-cis-6-membered ring (11-cis-6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11-cis-6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11-cis-6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11-cis-6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11-cis-6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11-cis-6mr-retinal.


Assuntos
Modelos Moleculares , Opsinas/química , Retinaldeído/química , Animais , Humanos , Opsinas/genética , Opsinas/metabolismo , Retinaldeído/genética , Retinaldeído/metabolismo , Células Sf9 , Spodoptera
11.
Mol Pharm ; 14(11): 3815-3823, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28881141

RESUMO

Thrombotic cardiovascular disease, including acute myocardial infarction, ischemic stroke, and venous thromboembolic disease, is the leading cause of morbidity and mortality worldwide. While reperfusion therapy with thrombolytic agents reduces mortality from acute myocardial infarction and disability from stroke, thrombolysis is generally less effective than mechanical reperfusion and is associated with fatal intracerebral hemorrhage in up to 2-5% of patients. To address these limitations, we propose the tobacco mosaic virus (TMV)-based platform technology for targeted delivery of thrombolytic therapies. TMV is a plant virus-based nanoparticle with a high aspect ratio shape measuring 300 × 18 nm. These soft matter nanorods have favorable flow and margination properties allowing the targeting of the diseased vessel wall. We have previously shown that TMV homes to thrombi in a photochemical mouse model of arterial thrombosis. Here we report the synthesis of TMV conjugates loaded with streptokinase (STK). Various TMV-STK formulations were produced through bioconjugation of STK to TMV via intervening PEG linkers. TMV-STK was characterized using SDS-PAGE and Western blot, transmission electron microscopy, cryo-electron microscopy, and cryo-electron tomography. We investigated the thrombolytic activity of TMV-STK in vitro using static phantom clots, and in a physiologically relevant hydrodynamic model of shear-induced thrombosis. Our findings demonstrate that conjugation of STK to the TMV surface does not compromise the activity of STK. Moreover, the nanoparticle conjugate significantly enhances thrombolysis under flow conditions, which can likely be attributed to TMV's shape-mediated flow properties resulting in enhanced thrombus accumulation and dissolution. Together, these data suggest TMV to be a promising platform for the delivery of thrombolytics to enhance clot localization and potentially minimize bleeding risk.


Assuntos
Nanopartículas/química , Vírus de Plantas/química , Terapia Trombolítica/métodos , Western Blotting , Sistemas de Liberação de Medicamentos/métodos , Eletroforese em Gel de Poliacrilamida , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Plasminogênio/química , Trombose/tratamento farmacológico , Vírus do Mosaico do Tabaco/química
12.
Anal Biochem ; 499: 63-65, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851339

RESUMO

Differential scanning fluorimetry (DSF) is used to assess protein stability, transition states, or the Kd values of various ligands, drug molecules, and antibodies. All fluorescent probes published to date either are incompatible with hydrophobic proteins/ligands, precluding analyses of transmembrane or membrane-associated proteins, or have excitation and detection wavelengths outside the range of real-time polymerase chain reaction (RT-PCR) machines, necessitating the use of dedicated devices. Here, we describe a thiol-reactive probe, BODIPY FL L-cystine (BFC), to overcome both of these shortcomings. The probe supports an inexpensive application of DSF measurements suitable for detection with standard RT-PCR machines in a hydrophilic or hydrophobic environment.


Assuntos
Compostos de Boro/química , Cistina/análogos & derivados , Corantes Fluorescentes/química , Fluorometria , Proteínas/análise , Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Compostos de Sulfidrila/química , Cistina/química , Interações Hidrofóbicas e Hidrofílicas , Reação em Cadeia da Polimerase em Tempo Real/normas , Temperatura
13.
Proteins ; 82(10): 2403-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24825751

RESUMO

Formation of virus specific replicase complex is among the most important steps that determines the fate of viral transcription and replication during Chikungunya virus (CHIKV) infection. In the present study, the authors have computationally generated a 3D structure of CHIKV late replicase complex on the basis of the interactions identified among the domains of CHIKV nonstructural proteins (nsPs) which make up the late replicase complex. The interactions among the domains of CHIKV nsPs were identified using systems such as pull down, protein interaction ELISA, and yeast two-hybrid. The structures of nsPs were generated using I-TASSER and the biological assembly of the replicase complex was determined using ZRANK and RDOCK. A total of 36 interactions among the domains and full length proteins were tested and 12 novel interactions have been identified. These interactions included the homodimerization of nsP1 and nsP4 through their respective C-ter domains; the associations of nsP2 helicase domain and C-ter domain of nsP4 with methyltransferase and membrane binding domains of nsP1; the interaction of nsP2 protease domain with C-ter domain of nsP4; and the interaction of nsP3 macro and alphavirus unique domains with the C-ter domain of nsP1. The novel interactions identified in the current study form a network of organized associations that suggest the spatial arrangement of nsPs in the late replicase complex of CHIKV.


Assuntos
Febre de Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Febre de Chikungunya/virologia , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Imunoprecipitação , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , RNA Viral , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/química , Replicação Viral
14.
bioRxiv ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38405886

RESUMO

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these voltages, specifically a ~4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope. We also achieved a ~3.2 Å resolution reconstruction for a 115 kDa asymmetric protein complex, proving its effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining ~3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, possibly bringing smaller sized particles within the scope of cryo-EM.

15.
Acta Crystallogr C Struct Chem ; 80(Pt 6): 179-189, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712546

RESUMO

We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.


Assuntos
Microscopia Crioeletrônica , Software , Fluxo de Trabalho
16.
Arch Virol ; 158(6): 1159-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23334837

RESUMO

Successful infection with chikungunya virus (CHIKV) depends largely on the ability of this virus to manipulate cellular processes in its favour through specific interactions with several host factors. The knowledge of virus-host interactions is of particular value for understanding the interface through which therapeutic strategies could be applied. In the current study, the authors have employed a computational method to study the protein interactions between CHIKV and both its human host and its mosquito vector. In this structure-based study, 2028 human and 86 mosquito proteins were predicted to interact with those of CHIKV through 3918 and 112 unique interactions, respectively. This approach could predict 40 % of the experimentally confirmed CHIKV-host interactions along with several novel interactions, suggesting the involvement of CHIKV in intracellular cell signaling, programmed cell death, and transcriptional and translational regulation. The data corresponded to those obtained in earlier studies for HIV and dengue viruses using the same methodology. This study provides a conservative set of potential interactions that can be employed for future experimental studies with a view to understanding CHIKV biology.


Assuntos
Infecções por Alphavirus/virologia , Vírus Chikungunya/fisiologia , Interações Hospedeiro-Patógeno , Aedes/virologia , Infecções por Alphavirus/fisiopatologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Drosophila melanogaster/virologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Inflamação/fisiopatologia , Inflamação/virologia , Biossíntese de Proteínas/fisiologia , Transcrição Gênica/fisiologia , Proteínas Virais/fisiologia , Proteínas Estruturais Virais/fisiologia
17.
Virus Genes ; 46(3): 535-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23355071

RESUMO

The biological assembly of Chandipura virus nucleocapsid (N) protein has been modeled and the amino acid residues involved in specific intermolecular interactions among N monomers during oligomerisation have been predicted.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , Mapeamento de Interação de Proteínas , Multimerização Proteica , Vesiculovirus/fisiologia , Montagem de Vírus , Modelos Moleculares , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Conformação Proteica , Vesiculovirus/genética
18.
Curr Opin Struct Biol ; 69: 99-107, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945959

RESUMO

Rod photoreceptor phosphodiesterase (PDE6) is the key catalytic enzyme of visual phototransduction. PDE6 is the only member of the phosphodiesterase family that consists of a heterodimeric catalytic core composed of PDE6α and PDE6ß subunits and two inhibitory PDE6γ subunits. Both PDE6α and PDE6ß contain two regulatory GAF domains and one catalytic domain. GAF domains and the tightly bound PDE6γ subunits allosterically regulate the activity of the catalytic domain in association with the GTP-bound transducin alpha subunit (Gtα-GTP). Recent cryo-electron microscopy structures of the PDE6αγßγ and PDE6αγßγ-(Gtα-GTP)2 complexes have provided valuable knowledge shedding additional light on the allosteric activation of PDE6 by Gtα-GTP. Here we discuss recent developments in our understanding of the mechanism of PDE6 activation.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Diester Fosfórico Hidrolases , Domínio Catalítico , Microscopia Crioeletrônica , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
19.
J Vis Exp ; (173)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398142

RESUMO

In the past several years, technological and methodological advancements in single-particle cryo-electron microscopy (cryo-EM) have paved a new avenue for the high-resolution structure determination of biological macromolecules. Despite the remarkable advances in cryo-EM, there is still scope for improvement in various aspects of the single-particle analysis workflow. Single-particle analysis demands a suitable software package for high-throughput automatic data acquisition. Several automatic data acquisition software packages were developed for automatic imaging for single-particle cryo-EM in the last eight years. This paper presents an application of a fully automated image acquisition pipeline for vitrified biomolecules under low-dose conditions. It demonstrates a software package, which can collect cryo-EM data fully, automatically, and precisely. Additionally, various microscopic parameters are easily controlled by this software package. This protocol demonstrates the potential of this software package in automated imaging of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) spike protein with a 200 keV cryo-electron microscope equipped with a direct electron detector (DED). Around 3,000 cryo-EM movie images were acquired in a single session (48 h) of data collection, yielding an atomic-resolution structure of the spike protein of SARS-CoV-2. Furthermore, this structural study indicates that the spike protein adopts two major conformations, 1-RBD (receptor-binding domain) up open and all RBD down closed conformations.


Assuntos
COVID-19 , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Software , Microscopia Crioeletrônica/métodos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
20.
PLoS One ; 15(4): e0228121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32236094

RESUMO

Melanopsin is a visual pigment expressed in a small subset of ganglion cells in the mammalian retina known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and is implicated in regulating non-image forming functions such as circadian photoentrainment and pupil constriction and contrast sensitivity in image formation. Mouse melanopsin's Carboxy-terminus (C-terminus) possesses 38 serine and threonine residues, which can potentially serve as phosphorylation sites for a G-protein Receptor Kinase (GRK) and be involved in the deactivation of signal transduction. Previous studies suggest that S388, T389, S391, S392, S394, S395 on the proximal region of the C-terminus of mouse melanopsin are necessary for melanopsin deactivation. We expressed a series of mouse melanopsin C-terminal mutants in HEK293 cells and using calcium imaging, and we found that the necessary cluster of six serine and threonine residues, while being critical, are insufficient for proper melanopsin deactivation. Interestingly, the additional six serine and threonine residues adjacent to the required six sites, in either proximal or distal direction, are capable of restoring wild-type deactivation of melanopsin. These findings suggest an element of plasticity in the molecular basis of melanopsin phosphorylation and deactivation. In addition, C-terminal chimeric mutants and molecular modeling studies support the idea that the initial steps of deactivation and ß-arrestin binding are centered around these critical phosphorylation sites (S388-S395). The degree of functional versatility described in this study, along with ipRGC biophysical heterogeneity and the possible use of multiple signal transduction cascades, might contribute to the diverse ipRGC light responses for use in non-image and image forming behaviors, even though all six sub types of ipRGCs express the same melanopsin gene OPN4.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Opsinas de Bastonetes/metabolismo , beta-Arrestina 1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação/fisiologia , Ligação Proteica , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusão/genética , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , beta-Arrestina 1/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa