Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 603(7903): 926-933, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296864

RESUMO

White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.


Assuntos
Tecido Adiposo Branco , Atlas como Assunto , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Metabólicas , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Obesidade/metabolismo
3.
STAR Protoc ; 5(1): 102893, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416649

RESUMO

Adipocyte size and fragility and commercial kit costs impose significant limitations on single-cell RNA sequencing of adipose tissue. Accordingly, we developed a workflow to isolate and sample-barcode nuclei from individual adipose tissue samples, integrating flow cytometry for quality control, counting, and precise nuclei pooling for direct loading onto the popular 10× Chromium controller. This approach can eliminate batch confounding, and significantly reduces poor-quality nuclei, ambient RNA contamination, and droplet loading-associated reagent waste, resulting in pronounced improvements in information content and cost efficiency.


Assuntos
Núcleo Celular , RNA , Animais , Camundongos , Humanos , Citometria de Fluxo/métodos , Análise de Sequência de RNA/métodos , Núcleo Celular/genética , Tecido Adiposo
4.
Nat Commun ; 15(1): 4646, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821928

RESUMO

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Assuntos
Fome , Fator Regulador 3 de Interferon , Leptina , Neurônios , Animais , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina , Epigênese Genética , Jejum , Regulação da Expressão Gênica , Fome/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transdução de Sinais , Transcriptoma
5.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320000

RESUMO

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Resistência à Insulina/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa