Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 146(10)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31076486

RESUMO

The key molecular interactions governing vertebrate limb bud development are a paradigm for studying the mechanisms controlling progenitor cell proliferation and specification during vertebrate organogenesis. However, little is known about the cellular heterogeneity of the mesenchymal progenitors in early limb buds that ultimately contribute to the chondrogenic condensations prefiguring the skeleton. We combined flow cytometric and transcriptome analyses to identify the molecular signatures of several distinct mesenchymal progenitor cell populations present in early mouse forelimb buds. In particular, jagged 1 (JAG1)-positive cells located in the posterior-distal mesenchyme were identified as the most immature limb bud mesenchymal progenitors (LMPs), which crucially depend on SHH and FGF signaling in culture. The analysis of gremlin 1 (Grem1)-deficient forelimb buds showed that JAG1-expressing LMPs are protected from apoptosis by GREM1-mediated BMP antagonism. At the same stage, the osteo-chondrogenic progenitors (OCPs) located in the core mesenchyme are already actively responding to BMP signaling. This analysis sheds light on the cellular heterogeneity of the early mouse limb bud mesenchyme and on the distinct response of LMPs and OCPs to morphogen signaling.


Assuntos
Proteínas Hedgehog/metabolismo , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Adv Funct Mater ; 31(20): 2010747, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34539304

RESUMO

The thymus provides the physiological microenvironment critical for the development of T lymphocytes, the cells that orchestrate the adaptive immune system to generate an antigen-specific response. A diverse population of stroma cells provides surface-bound and soluble molecules that orchestrate the intrathymic maturation and selection of developing T cells. Forming an intricate 3D architecture, thymic epithelial cells (TEC) represent the most abundant and important constituent of the thymic stroma. Effective models for in and ex vivo use of adult TEC are still wanting, limiting the engineering of functional thymic organoids and the understanding of the development of a competent immune system. Here a 3D scaffold is developed based on decellularized thymic tissue capable of supporting in vitro and in vivo thymopoiesis by both fetal and adult TEC. For the first time, direct evidences of feasibility for sustained graft-resident T-cell development using adult TEC as input are provided. Moreover, the scaffold supports prolonged in vitro culture of adult TEC, with a retained expression of the master regulator Foxn1. The success of engineering a thymic scaffold that sustains adult TEC function provides unprecedented opportunities to investigate thymus development and physiology and to design and implement novel strategies for thymus replacement therapies.

3.
Blood ; 122(20): 3461-72, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24016461

RESUMO

Genetically targeted T cells promise to solve the feasibility and efficacy hurdles of adoptive T-cell therapy for cancer. Selecting a target expressed in multiple-tumor types and that is required for tumor growth would widen disease indications and prevent immune escape caused by the emergence of antigen-loss variants. The adhesive receptor CD44 is broadly expressed in hematologic and epithelial tumors, where it contributes to the cancer stem/initiating phenotype. In this study, silencing of its isoform variant 6 (CD44v6) prevented engraftment of human acute myeloid leukemia (AML) and multiple myeloma (MM) cells in immunocompromised mice. Accordingly, T cells targeted to CD44v6 by means of a chimeric antigen receptor containing a CD28 signaling domain mediated potent antitumor effects against primary AML and MM while sparing normal hematopoietic stem cells and CD44v6-expressing keratinocytes. Importantly, in vitro activation with CD3/CD28 beads and interleukin (IL)-7/IL-15 was required for antitumor efficacy in vivo. Finally, coexpressing a suicide gene enabled fast and efficient pharmacologic ablation of CD44v6-targeted T cells and complete rescue from hyperacute xenogeneic graft-versus-host disease modeling early and generalized toxicity. These results warrant the clinical investigation of suicidal CD44v6-targeted T cells in AML and MM.


Assuntos
Antígenos de Neoplasias/imunologia , Receptores de Hialuronatos/imunologia , Imunoterapia Adotiva , Leucemia Mieloide Aguda/terapia , Terapia de Alvo Molecular , Mieloma Múltiplo/terapia , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos CD28/imunologia , Complexo CD3/imunologia , Linhagem Celular Tumoral/imunologia , Linhagem Celular Tumoral/transplante , Citotoxicidade Imunológica , Genes Transgênicos Suicidas , Doença Enxerto-Hospedeiro/terapia , Humanos , Receptores de Hialuronatos/genética , Interleucina-15/imunologia , Interleucina-15/farmacologia , Interleucina-7/imunologia , Interleucina-7/farmacologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mielomonocítica Aguda/imunologia , Leucemia Mielomonocítica Aguda/patologia , Leucemia Mielomonocítica Aguda/terapia , Ativação Linfocitária , Camundongos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Transplante de Neoplasias , Estrutura Terciária de Proteína , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Biomed Mater Res A ; 110(7): 1372-1385, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35262240

RESUMO

Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td  = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno/química , Humanos , Iridoides , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Adv Mater ; 33(43): e2103737, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34486186

RESUMO

Design criteria for tissue-engineered materials in regenerative medicine include robust biological effectiveness, off-the-shelf availability, and scalable manufacturing under standardized conditions. For bone repair, existing strategies rely on primary autologous cells, associated with unpredictable performance, limited availability and complex logistic. Here, a conceptual shift based on the manufacturing of devitalized human hypertrophic cartilage (HyC), as cell-free material inducing bone formation by recapitulating the developmental process of endochondral ossification, is reported. The strategy relies on a customized human mesenchymal line expressing bone morphogenetic protein-2 (BMP-2), critically required for robust chondrogenesis and concomitant extracellular matrix (ECM) enrichment. Following apoptosis-driven devitalization, lyophilization, and storage, the resulting off-the-shelf cartilage tissue exhibits unprecedented osteoinductive properties, unmatched by synthetic delivery of BMP-2 or by living engineered grafts. Scalability and pre-clinical efficacy are demonstrated by bioreactor-based production and subsequent orthotopic assessment. The findings exemplify the broader paradigm of programming human cell lines as biological factory units to engineer customized ECMs, designed to activate specific regenerative processes.


Assuntos
Osteogênese
6.
J Mech Behav Biomed Mater ; 86: 294-304, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006278

RESUMO

Articular cartilage regeneration is still an open challenge in the field of tissue engineering. Although autologous chondrocytes seeded on collagen scaffolds (CSs) have already showed interesting results in the long-term repair of chondral lesions, they are not exempt from disadvantages that could be overcome using mesenchymal stem cells (MSCs). The ability of polymeric scaffolds to support MSCs proliferation and differentiation has been widely documented. However, few studies assessed their mechanical performances and additionally performing a single mechanical test, i.e. stress-strain or stress-relaxation in compression. Articular cartilage, though, possesses unique and multifaceted mechanical properties that can be exhaustively described only implementing a complete set of mechanical tests. Hence, the final aim of this study was to in depth assess the mechanical properties of human MSCs-cultured collagen scaffolds applying unconfined stress-strain, stress-relaxation and dynamic compression tests and identify key mechanical parameters. Firstly, plain CSs were fabricated and cultured under chondrogenic conditions with human MSCs (hMSCs). CSs displayed a high-interconnected porosity permitting uniform hMSCs distribution along the scaffold depth. Within CSs, hMSCs differentiated in chondroblasts, characterized by the presence of the lacunae and by a pericellular matrix positive for GAGs and for type 2 collagen deposition. The deep implemented mechanical characterization highlighted that the engineered constructs display (i) higher resistance to compression, (ii) more marked viscoelastic behavior over time and (iii) increased dynamic properties compared to naked CSs. In particular, stress-strain testes showed significant increase in the engineered constructs' stiffness that can be related to the proteoglycan deposition, observed by histology at the end of culture. Stress-relaxation and dynamic tests pointed out a substantial increase of peak and equilibrium stresses, relaxation time and dynamic modulus in the engineered constructs compared to empty CSs, suggesting a considerable decrease in scaffold permeability due to a strong chondral matrix deposition. Overall, the obtained results indicate a significant improvement of cell/CS mechanical performance toward a cartilage-like mechanical behavior.


Assuntos
Cartilagem/citologia , Cartilagem/fisiologia , Engenharia , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Regeneração , Fenômenos Biomecânicos , Colágeno/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa