Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Med Genet A ; 176(5): 1207-1211, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681093

RESUMO

Vici syndrome is a multisystem disorder characterized by agenesis of the corpus callosum, oculocutaneous hypopigmentation, cataracts, cardiomyopathy, combined immunodeficiency, failure to thrive, profound developmental delay, and acquired microcephaly. Most individuals are severely affected and have a markedly reduced life span. Here we describe an 8-year-old boy with a history of developmental delay, agenesis of the corpus callosum, failure to thrive, myopathy, and well-controlled epilepsy. He was initially diagnosed with a mitochondrial disorder, based in part upon nonspecific muscle biopsy findings, but mitochondrial DNA mutation analysis revealed no mutations. Whole exome sequencing revealed compound heterozygosity for two EPG5 variants, inherited in trans. One was a known pathogenic mutation in exon 13 (c.2461C > T, p.Arg821X). The second was reported as a variant of unknown significance found within intron 16, six nucleotides before the exon 17 splice acceptor site (c.3099-6C > G). Reverse transcription-polymerase chain reaction of the EPG5 mRNA showed skipping of exon 17-which maintains an open reading frame-in 77% of the transcript, along with 23% expression of wild-type mRNA suggesting that intronic mutations may affect splicing of the EPG5 gene and result in symptoms. However, the expression of 23% wild-type mRNA may result in a significantly attenuated Vici syndrome phenotype.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Catarata/diagnóstico , Catarata/genética , Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Proteínas/genética , Proteínas Relacionadas à Autofagia , Biópsia , Regulação para Baixo , Éxons , Heterozigoto , Humanos , Proteínas de Membrana Lisossomal , Masculino , Músculos/metabolismo , Músculos/patologia , Mutação , RNA Mensageiro , Análise de Sequência de DNA , Proteínas de Transporte Vesicular , Sequenciamento do Exoma
2.
Neuromuscul Disord ; 28(2): 116-121, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29305136

RESUMO

The reading frame rule suggests that Duchenne muscular dystrophy (DMD) results from DMD mutations causing an out-of-frame transcript, whereas the milder Becker muscular dystrophy results from mutations causing an in-frame transcript. However, predicted nonsense mutations may instead result in altered splicing and an in-frame transcript. Here we report a 10-year-old boy with a predicted nonsense mutation in exon 42 who had a 6-minute walk time of 157% of that of age matched DMD controls, characterized as intermediate muscular dystrophy. RNA sequencing analysis from a muscle biopsy revealed only 6.0-9.8% of DMD transcripts were in-frame, excluding exon 42, and immunoblot demonstrated only 3.2% dystrophin protein expression. Another potential genetic modifier noted was homozygosity for the protective IAAM LTBP4 haplotype. This case suggests that very low levels of DMD exon skipping and dystrophin protein expression may result in amelioration of skeletal muscle weakness, a finding relevant to current dystrophin-restoring therapies.


Assuntos
Códon sem Sentido , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Criança , Éxons , Expressão Gênica , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Fenótipo
3.
J Neuromuscul Dis ; 4(3): 199-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869484

RESUMO

BACKGROUND: Exon skipping strategies in Duchenne muscular dystrophy (DMD) have largely been directed toward altering splicing of exons flanking out-of-frame deletions, with the goal of restoring an open mRNA reading frame that leads to production of an internally deleted but partially functional dystrophin protein. OBJECTIVE: We sought to apply exon skipping to duplication mutations, assuming that the inherently limited efficiency of antisense oligonucleotide-induced exon skipping would more frequently skip a single copy of a duplicated exon, rather than both and result in significant amounts of wild-type DMD mRNA. METHODS: We tested this hypothesis in fibroblast cell lines derived from patients with a variety of single or multiple exon duplications that have been modified to allow transdifferentiation into a myogenic lineage. RESULTS: Using a variety of 2'O-methyl antisense oligonucleotides, significant skipping was induced for each duplication leading to a wild-type transcript as a major mRNA product. CONCLUSIONS: This study provides another proof of concept for the feasibility of therapeutic skipping in patients carrying exon duplications in order to express wild-type, full-length mRNA, although careful evaluation of the skipping efficiency should be performed as some exons are easier to skip than others. Such a personalized strategy is expected to be highly beneficial for this subset of DMD patients, compared to inducing expression of an internally-deleted dystrophin.


Assuntos
Distrofina/genética , Éxons/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso , Linhagem Celular , Fibroblastos , Duplicação Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa