Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(5): 1282-1297.e18, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33098771

RESUMO

Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues. Through analysis of the receptor, transcriptional, and chromatin accessibility landscapes, we identify varying neutrophil states and assign non-canonical functions, including vascular repair and hematopoietic homeostasis. Accordingly, depletion of neutrophils compromised angiogenesis during early age, genotoxic injury, and viral infection, and impaired hematopoietic recovery after irradiation. Neutrophils acquired these properties in target tissues, a process that, in the lungs, occurred in CXCL12-rich areas and relied on CXCR4. Our results reveal that tissues co-opt neutrophils en route for elimination to induce programs that support their physiological demands.


Assuntos
Linhagem da Célula , Neutrófilos/metabolismo , Especificidade de Órgãos , Animais , Cromatina/metabolismo , Feminino , Hematopoese , Intestinos/irrigação sanguínea , Pulmão/irrigação sanguínea , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores CXCR4/metabolismo , Análise de Célula Única , Transcrição Gênica , Transcriptoma/genética
2.
Nat Immunol ; 19(12): 1341-1351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374128

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) have been characterized in the context of malignancies. Here we show that PMN-MDSCs can restrain B cell accumulation during central nervous system (CNS) autoimmunity. Ly6G+ cells were recruited to the CNS during experimental autoimmune encephalomyelitis (EAE), interacted with B cells that produced the cytokines GM-CSF and interleukin-6 (IL-6), and acquired properties of PMN-MDSCs in the CNS in a manner dependent on the signal transducer STAT3. Depletion of Ly6G+ cells or dysfunction of Ly6G+ cells through conditional ablation of STAT3 led to the selective accumulation of GM-CSF-producing B cells in the CNS compartment, which in turn promoted an activated microglial phenotype and lack of recovery from EAE. The frequency of CD138+ B cells in the cerebrospinal fluid (CSF) of human subjects with multiple sclerosis was negatively correlated with the frequency of PMN-MDSCs in the CSF. Thus PMN-MDSCs might selectively control the accumulation and cytokine secretion of B cells in the inflamed CNS.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Células Supressoras Mieloides/imunologia , Adolescente , Adulto , Animais , Sistema Nervoso Central/imunologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
3.
Immunity ; 50(1): 166-180.e7, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650375

RESUMO

Chronic inflammation drives the progression of colorectal cancer (CRC). Increased expression of interleukin (IL)-17A is associated with poor prognosis, and IL-17A blockade curbs tumor progression in preclinical models of CRC. Here we examined the impact of IL-1 signaling, a key regulator of the IL-17 pathway, in different cell types within the CRC microenvironment. Genetic deletion of the IL-1 receptor (IL-1R1) in epithelial cells alleviated tumorigenesis in the APC model of CRC, demonstrating a cell-autonomous role for IL-1 signaling in early tumor seed outgrowth. T cell specific ablation of IL-1R1 decreased tumor-elicited inflammation dependent on IL-17 and IL-22, thereby reducing CRC progression. The pro-tumorigenic roles of IL-1 were counteracted by its effects on myeloid cells, particularly neutrophils, where IL-1R1 ablation resulted in bacterial invasion into tumors, heightened inflammation and aggressive CRC progression. Thus, IL-1 signaling elicits cell-type-specific responses, which, in aggregate, set the inflammatory tone of the tumor microenvironment and determine the propensity for disease progression.


Assuntos
Neoplasias Colorretais/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Neutrófilos/imunologia , Salmonelose Animal/imunologia , Salmonella/imunologia , Animais , Carcinogênese , Células Cultivadas , Humanos , Interleucina-1/genética , Interleucina-1/imunologia , Interleucinas/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/ultraestrutura , Especificidade de Órgãos , Receptores de Interleucina-1/genética , Transdução de Sinais , Microambiente Tumoral , Interleucina 22
4.
Mol Cell Proteomics ; : 100858, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395581

RESUMO

Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1,000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6,200 mouse and ∼5,300 human proteins from circulating neutrophils. 4,800 mouse and 3,400 human proteins were recovered from 1,000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue infiltrated neutrophils.

5.
Proc Natl Acad Sci U S A ; 120(40): e2215421120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756334

RESUMO

Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFß and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFß1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFß1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFß1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Interleucina-27 , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Histonas , Plaquetas , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética
6.
Immunol Rev ; 306(1): 293-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837251

RESUMO

Innate immunity is the first line of defense against infectious intruders and also plays a major role in the development of sterile inflammation. Direct microscopic imaging of the involved immune cells, especially neutrophil granulocytes, monocytes, and macrophages, has been performed since more than 150 years, and we still obtain novel insights on a frequent basis. Initially, intravital microscopy was limited to small-sized animal species, which were often invertebrates. In this review, we will discuss recent results on the biology of neutrophils and macrophages that have been obtained using confocal and two-photon microscopy of individual cells or subcellular structures as well as light-sheet microscopy of entire organs. This includes the role of these cells in infection defense and sterile inflammation in mammalian disease models relevant for human patients. We discuss their protective but also disease-enhancing activities during tumor growth and ischemia-reperfusion damage of the heart and brain. Finally, we provide two visions, one experimental and one applied, how our knowledge on the function of innate immune cells might be further enhanced and also be used in novel ways for disease diagnostics in the future.


Assuntos
Imunidade Inata , Neutrófilos , Animais , Humanos , Microscopia Intravital/métodos , Macrófagos , Mamíferos , Monócitos
7.
PLoS Pathog ; 19(10): e1011725, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883584

RESUMO

Antiretroviral therapy (ART) transformed HIV from a life-threatening disease to a chronic condition. However, eliminating the virus remains an elusive therapy goal. For several decades, Friend virus (FV) infection serves as a murine model to study retrovirus immunity. Similar to HIV, FV persists at low levels in lymph nodes B cell follicles avoiding elimination by immune cells. Such immune-privileged reservoirs exclude cytotoxic T cells from entry. However, CXCR5+ T cells are permitted to traffic through germinal centers. This marker is predominantly expressed by CD4+ follicular helper T cells (Tfh). Therefore, we explored immunotherapy to induce cytotoxic Tfh, which are rarely found under physiological conditions. The TNF receptor family member CD137 was first identified as a promising target for cancer immunotherapy. We demonstrated that FV-infected mice treatment with αCD137 antibody resulted in an induction of the cytotoxic program in Tfh. The therapy significantly increased numbers of cytotoxic Tfh within B cell follicles and contributed to viral load reduction. Moreover, αCD137 antibody combined with ART delayed virus rebound upon treatment termination without disturbing the lymph node architecture or antibody responses. Thus, αCD137 antibody therapy might be a novel strategy to target the retroviral reservoir and an interesting approach for HIV cure research.


Assuntos
Infecções por HIV , Células T Auxiliares Foliculares , Animais , Camundongos , Retroviridae , Linfócitos B , Imunoterapia , Linfócitos T Auxiliares-Indutores
8.
Arterioscler Thromb Vasc Biol ; 44(4): 915-929, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38357819

RESUMO

BACKGROUND: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.


Assuntos
Isquemia Encefálica , Cloridrato de Fingolimode , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Microscopia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Modelos Animais de Doenças
9.
Nature ; 569(7755): 236-240, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043745

RESUMO

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Assuntos
Aterosclerose/patologia , Morte Celular , Membrana Celular/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Porosidade , Animais , Artérias/patologia , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Histonas/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/patologia , Neutrófilos/citologia , Ligação Proteica/efeitos dos fármacos
10.
J Mol Cell Cardiol ; 189: 1-11, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387309

RESUMO

Persistent immune activation contributes significantly to left ventricular (LV) dysfunction and adverse remodeling in heart failure (HF). In contrast to their well-known essential role in acute myocardial infarction (MI) as first responders that clear dead cells and facilitate subsequent reparative macrophage polarization, the role of neutrophils in the pathobiology of chronic ischemic HF is poorly defined. To determine the importance of neutrophils in the progression of ischemic cardiomyopathy, we measured their production, levels, and activation in a mouse model of chronic HF 8 weeks after permanent coronary artery ligation and large MI. In HF mice, neutrophils were more abundant both locally in failing myocardium (more in the border zone) and systemically in the blood, spleen, and bone marrow, together with increased BM granulopoiesis. There were heightened stimuli for neutrophil recruitment and trafficking in HF, with increased myocardial expression of the neutrophil chemoattract chemokines CXCL1 and CXCL5, and increased neutrophil chemotactic factors in the circulation. HF neutrophil NETotic activity was increased in vitro with coordinate increases in circulating neutrophil extracellular traps (NETs) in vivo. Neutrophil depletion with either antibody-based or genetic approaches abrogated the progression of LV remodeling and fibrosis at both intermediate and late stages of HF. Moreover, analogous to murine HF, the plasma milieu in human acute decompensated HF strongly promoted neutrophil trafficking. Collectively, these results support a key tissue-injurious role for neutrophils and their associated cytotoxic products in ischemic cardiomyopathy and suggest that neutrophils are potential targets for therapeutic immunomodulation in this disease.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Remodelação Ventricular , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Cardiomiopatias/metabolismo , Camundongos Endogâmicos C57BL
11.
Stroke ; 55(10): 2522-2527, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39315830

RESUMO

BACKGROUND: The discrepancy between experimental research and clinical trial outcomes is a persistent challenge in preclinical studies, particularly in stroke research. A possible factor contributing to this issue is the lack of standardization across experimental stroke models, leading to poor reproducibility in multicenter studies. This study addresses this gap by aiming to enhance reproducibility and the efficacy of multicenter studies through the harmonization of protocols and training of involved personnel. METHODS: We established a set of standard operating procedures for various stroke models and the Neuroscore. These standard operating procedures were implemented across multiple research centers, followed by specialized, in-person training for all participants. We measured the variability in infarct volume both before and after the implementation of these standardized protocols and training sessions. RESULTS: The standardization process led to a significant reduction in variability of infarct volume across different stroke models (40%-50% reduction), demonstrating the effectiveness of our harmonized protocols and training. Additionally, the implementation of the Neuroscore system across centers showed low variability and consistent results up to 28 days poststroke, underscoring its utility in chronic phase evaluations. CONCLUSIONS: The harmonization of protocols and surgeon training significantly reduced variability in experimental outcomes across different centers. This improvement can increase the comparability of data between research groups and enhance the statistical power of multicenter studies. Our findings also establish the Neuroscore as a reliable tool for long-term assessment in stroke research, paving the way for more consistent and impactful multicenter preclinical studies.


Assuntos
Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Reprodutibilidade dos Testes , Animais , Modelos Animais de Doenças , Masculino , Humanos , Estudos Multicêntricos como Assunto/métodos , Estudos Multicêntricos como Assunto/normas
12.
J Neuroinflammation ; 20(1): 210, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715288

RESUMO

BACKGROUND: The intravenous delivery of adult neural precursor cells (NPC) has shown promising results in enabling cerebroprotection, brain tissue remodeling, and neurological recovery in young, healthy stroke mice. However, the translation of cell-based therapies to clinical settings has encountered challenges. It remained unclear if adult NPCs could induce brain tissue remodeling and recovery in mice with hyperlipidemia, a prevalent vascular risk factor in stroke patients. METHODS: Male mice on a normal (regular) diet or on cholesterol-rich Western diet were exposed to 30 min intraluminal middle cerebral artery occlusion (MCAO). Vehicle or 106 NPCs were intravenously administered immediately after reperfusion, at 3 day and 7 day post-MCAO. Neurological recovery was evaluated using the Clark score, Rotarod and tight rope tests over up to 56 days. Histochemistry and light sheet microscopy were used to examine ischemic injury and brain tissue remodeling. Immunological responses in peripheral blood and brain were analyzed through flow cytometry. RESULTS: NPC administration reduced infarct volume, blood-brain barrier permeability and the brain infiltration of neutrophils, monocytes, T cells and NK cells in the acute stroke phase in both normolipidemic and hyperlipidemic mice, but increased brain hemorrhage formation and neutrophil, monocyte and CD4+ and CD8+ T cell counts and activation in the blood of hyperlipidemic mice. While neurological deficits in hyperlipidemic mice were reduced by NPCs at 3 day post-MCAO, NPCs did not improve neurological deficits at later timepoints. Besides, NPCs did not influence microglia/macrophage abundance and activation (assessed by morphology analysis), astroglial scar formation, microvascular length or branching point density (evaluated using light sheet microscopy), long-term neuronal survival or brain atrophy in hyperlipidemic mice. CONCLUSIONS: Intravenously administered NPCs did not have persistent effects on post-ischemic neurological recovery and brain remodeling in hyperlipidemic mice. These findings highlight the necessity of rigorous investigations in vascular risk factor models to fully assess the long-term restorative effects of cell-based therapies. Without comprehensive studies in such models, the clinical potential of cell-based therapies cannot be definitely determined.


Assuntos
Células-Tronco Neurais , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Neurônios , Hemorragias Intracranianas , Encéfalo
13.
J Virol ; 96(5): e0173021, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35019724

RESUMO

Although HIV-specific CD8 T cells are effective in controlling HIV infection, they fail to clear infection even in the presence of antiretroviral therapy (ART) and cure strategies such as "shock-and-kill." Little is known how ART is contributing to HIV-specific CD8 T cell function and the ability to clear HIV infection. Therefore, we first assessed the cytokine polyfunctionality and proliferation of CD8 T cells from ART-treated HIV+ individuals directly ex vivo and observed a decline in the multifunctional response as well as proliferation indices of these cells in individuals treated with integrase inhibitor (INSTI) based ART regimens compared to both protease inhibitor (PI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) based regimens. We next cocultured CD8 T cells with different drugs individually and were able to observe reduced functional properties with significantly decreased ability of CD8 T cells to express IFN-γ, MIP1ß and TNF-α only after treatment with INSTI-based regimens. Furthermore, previously activated and INSTI-treated CD8 T cells demonstrated reduced capacity to express perforin and granzyme B compared to PI and NNRTI treated cells. Unexpectedly, CD8 T cells treated with dolutegravir showed a similar killing ability 7 dpi compared to emtricitabine or rilpivirine treated cells. We next used a live cell imaging assay to determine the migratory capacity of CD8 T cells. Only INSTI-treated cells showed less migratory activity after SDF-1α stimulation compared to NRTI regimens. Our data show that the choice of ART can have a significant impact on CD8 T cell effector functions, but the importance for potential eradication attempts is unknown. IMPORTANCE Integrase Strand Transfer Inhibitors (INSTI) are recommended by national and international guidelines as a key component of ART in the treatment of HIV infected patients. In particular, their efficacy, tolerability and low drug-drug interaction profile have made them to the preferred choice as part of the first-line regimen in treatment-naive individuals. Here, we demonstrate that the choice of ART can have a significant impact on function and metabolism of CD8 T cells. In summary, our study provides first evidence on a significant, negative impact on CD8 T cell effector functions in the presence of two INSTIs, dolutegravir and elvitegravir, which may contribute to the limited success of eradicating HIV-infected cells through "shock-and-kill" strategies. Although our findings are coherent with recent studies highlighting a possible role of dolutegravir in weight gain, further investigations are necessary to fully understand the impact of INSTI-based regimens on the health of the individual during antiretroviral therapy.


Assuntos
Linfócitos T CD8-Positivos , Infecções por HIV , Inibidores de Integrase de HIV , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Humanos , Inibidores da Transcriptase Reversa/uso terapêutico
14.
PLoS Pathog ; 17(3): e1009387, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690673

RESUMO

The skin innate immune response to methicillin-resistant Staphylococcus aureus (MRSA) culminates in the formation of an abscess to prevent bacterial spread and tissue damage. Pathogen recognition receptors (PRRs) dictate the balance between microbial control and injury. Therefore, intracellular brakes are of fundamental importance to tune the appropriate host defense while inducing resolution. The intracellular inhibitor suppressor of cytokine signaling 1 (SOCS-1), a known JAK/STAT inhibitor, prevents the expression and actions of PRR adaptors and downstream effectors. Whether SOCS-1 is a molecular component of skin host defense remains to be determined. We hypothesized that SOCS-1 decreases type I interferon production and IFNAR-mediated antimicrobial effector functions, limiting the inflammatory response during skin infection. Our data show that MRSA skin infection enhances SOCS-1 expression, and both SOCS-1 inhibitor peptide-treated and myeloid-specific SOCS-1 deficient mice display decreased lesion size, bacterial loads, and increased abscess thickness when compared to wild-type mice treated with the scrambled peptide control. SOCS-1 deletion/inhibition increases phagocytosis and bacterial killing, dependent on nitric oxide release. SOCS-1 inhibition also increases the levels of type I and type II interferon levels in vivo. IFNAR deletion and antibody blockage abolished the beneficial effects of SOCS-1 inhibition in vivo. Notably, we unveiled that hyperglycemia triggers aberrant SOCS-1 expression that correlates with decreased overall IFN signatures in the infected skin. SOCS-1 inhibition restores skin host defense in the highly susceptible hyperglycemic mice. Overall, these data demonstrate a role for SOCS-1-mediated type I interferon actions in host defense and inflammation during MRSA skin infection.


Assuntos
Interferon Tipo I/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Animais , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
15.
Liver Int ; 43(4): 896-905, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36440606

RESUMO

BACKGROUND AND AIMS: Given the early response of neutrophil granulocytes to infections, detection of pathological neutrophil migration might help in predicting adverse events in patients with liver cirrhosis. METHODS: Migration of blood neutrophils in hospitalized patients with cirrhosis was characterized by a novel standardized migration assay. Pathological neutrophil migration patterns were associated with a composite endpoint of ACLF, sepsis or death within 7 or 30 days. RESULTS: Overall, 125 patients were included, of whom 11 (8.8%) had compensated cirrhosis, 84 (67.2%) had acute decompensation (AD) and 30 (24%) had acute-on-chronic liver failure (ACLF). The migration response of neutrophils from patients with AD or ACLF to stimulation with the chemotactic formylpeptide f-Met-Leu-Phe (fMLP) was significantly impaired, while the response to chemokine (C-X-C motif)-ligand 8 (CXCL8) was affected less pronouncedly. In contrast, no relevant differences in response to CXCL1 were observed. Of note, neutrophils of a number of patients with AD and ACLF were largely immotile at resting and stimulated conditions. Patients with non-migrating neutrophils at unstimulated conditions were at high risk to develop the composite endpoint of ACLF, sepsis or death. Moreover, expression of chemokine receptors CXCR1 and CXCR2 was significantly decreased in patients with ACLF. Interestingly, the expression of chemokine receptors did not correlate with neutrophil migration patterns, but-based on the increased expression of the cell surface markers CD66b and CD177-neutrophils of patients with AD and ACLF were strongly pre-activated. CONCLUSION: Pathological neutrophil migration in patients with cirrhosis indicates a high risk of developing adverse outcomes.


Assuntos
Insuficiência Hepática Crônica Agudizada , Sepse , Humanos , Neutrófilos , Cirrose Hepática/complicações , Fibrose , Receptores de Quimiocinas , Sepse/complicações , Prognóstico
16.
Eur Heart J ; 43(4): 316-329, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-34389849

RESUMO

AIMS: Cardiac immune-related adverse events (irAEs) from immune checkpoint inhibition (ICI) targeting programmed death 1 (PD1) are of growing concern. Once cardiac irAEs become clinically manifest, fatality rates are high. Cardio-oncology aims to prevent detrimental effects before manifestation of severe complications by targeting early pathological changes. We therefore aimed to investigate early consequences of PD1 inhibition for cardiac integrity to prevent the development of overt cardiac disease. METHODS AND RESULTS: We investigated cardiac-specific consequences from anti-PD1 therapy in a combined biochemical and in vivo phenotyping approach. Mouse hearts showed broad expression of the ligand PDL1 on cardiac endothelial cells as a main mediator of immune-crosstalk. Using a novel melanoma mouse model, we assessed that anti-PD1 therapy promoted myocardial infiltration with CD4+ and CD8+ T cells, the latter being markedly activated. Left ventricular (LV) function was impaired during pharmacological stress, as shown by pressure-volume catheterization. This was associated with a dysregulated myocardial metabolism, including the proteome and the lipidome. Analogous to the experimental approach, in patients with metastatic melanoma (n = 7) receiving anti-PD1 therapy, LV function in response to stress was impaired under therapy. Finally, we identified that blockade of tumour necrosis factor alpha (TNFα) preserved LV function without attenuating the anti-cancer efficacy of anti-PD1 therapy. CONCLUSIONS: Anti-PD1 therapy induces a disruption of cardiac immune homeostasis leading to early impairment of myocardial functional integrity, with potential prognostic effects on the growing number of treated patients. Blockade of TNFα may serve as an approach to prevent the manifestation of ICI-related cardiotoxicity.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Cardiotoxicidade/etiologia , Células Endoteliais , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Melanoma/tratamento farmacológico , Camundongos , Receptor de Morte Celular Programada 1/uso terapêutico
17.
BMC Biol ; 20(1): 264, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447206

RESUMO

BACKGROUND: The SARS-CoV-2/COVID-19 pandemic has inflicted medical and socioeconomic havoc, and despite the current availability of vaccines and broad implementation of vaccination programs, more easily accessible and cost-effective acute treatment options preventing morbidity and mortality are urgently needed. Herbal teas have historically and recurrently been applied as self-medication for prophylaxis, therapy, and symptom alleviation in diverse diseases, including those caused by respiratory viruses, and have provided sources of natural products as basis for the development of therapeutic agents. To identify affordable, ubiquitously available, and effective treatments, we tested herbs consumed worldwide as herbal teas regarding their antiviral activity against SARS-CoV-2. RESULTS: Aqueous infusions prepared by boiling leaves of the Lamiaceae perilla and sage elicit potent and sustained antiviral activity against SARS-CoV-2 when applied after infection as well as prior to infection of cells. The herbal infusions exerted in vitro antiviral effects comparable to interferon-ß and remdesivir but outperformed convalescent sera and interferon-α2 upon short-term treatment early after infection. Based on protein fractionation analyses, we identified caffeic acid, perilla aldehyde, and perillyl alcohol as antiviral compounds. Global mass spectrometry (MS) analyses performed comparatively in two different cell culture infection models revealed changes of the proteome upon treatment with herbal infusions and provided insights into the mode of action. As inferred by the MS data, induction of heme oxygenase 1 (HMOX-1) was confirmed as effector mechanism by the antiviral activity of the HMOX-1-inducing compounds sulforaphane and fraxetin. CONCLUSIONS: In conclusion, herbal teas based on perilla and sage exhibit antiviral activity against SARS-CoV-2 including variants of concern such as Alpha, Beta, Delta, and Omicron, and we identified HMOX-1 as potential therapeutic target. Given that perilla and sage have been suggested as treatment options for various diseases, our dataset may constitute a valuable resource also for future research beyond virology.


Assuntos
Tratamento Farmacológico da COVID-19 , Chás de Ervas , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Pandemias , Soroterapia para COVID-19
18.
J Allergy Clin Immunol ; 150(4): 909-919.e8, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35589416

RESUMO

BACKGROUND: Psoriasis is a common inflammatory skin disease resulting from dysregulation of the IL-23/TH17 immune axis. The prevalence and severity of psoriasis is higher in men than in women, although the underlying reasons for this are unclear. OBJECTIVE: We studied whether estradiol, a female hormone, plays protective roles in imiquimod-induced psoriatic inflammation in mice by regulating neutrophil and macrophage functions. METHODS: Wild-type mice and conditional knockout mice were ovariectomized, supplemented with placebo or estradiol pellets, and an imiquimod-containing cream applied. RESULTS: Mice without endogenous ovarian hormones exhibited exacerbated psoriatic inflammation including increased production of IL-17A and IL-1ß, which was reversed by exogenously added estradiol. The suppressive effect of estradiol on the production of IL-1ß and IL-17A was abolished in mice lacking estrogen receptors in neutrophils and macrophages (Esr1f/fEsr2f/fLysM-Cre+ mice). IL-1ß, which is required for production of IL-17A in the psoriasis model, was mainly produced by neutrophils and inflammatory macrophages. Estradiol suppressed IL-1ß production from neutrophils and macrophages in mice both in vivo and in vitro and from human neutrophils in vitro. CONCLUSION: Our results suggest a novel mechanism for sex-dependent differences in psoriasis clinical phenotypes that may shed new light on the pathology of psoriasis.


Assuntos
Interleucina-17 , Psoríase , Animais , Modelos Animais de Doenças , Estradiol/farmacologia , Estradiol/uso terapêutico , Imiquimode/efeitos adversos , Inflamação/patologia , Interleucina-23 , Macrófagos , Camundongos , Camundongos Knockout , Neutrófilos , Receptores de Estrogênio , Pele
19.
Stroke ; 53(1): e14-e18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847707

RESUMO

BACKGROUND AND PURPOSE: Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce ischemic neuroprotection in mice by modulating the brain infiltration of leukocytes and, specifically polymorphonuclear neutrophils. So far, effects of MSC-sEVs were only studied in young ischemic rodents. We herein examined the effects of MSC-sEVs in aged mice. METHODS: Male and female C57Bl6/j mice (8-10 weeks or 15-24 months) were exposed to transient intraluminal middle cerebral artery occlusion. Vehicle or sEVs (equivalent of 2×106 MSCs) were intravenously administered. Neurological deficits, ischemic injury, blood-brain barrier integrity, brain leukocyte infiltration, and blood leukocyte responses were evaluated over up to 7 days. RESULTS: MSC-sEV delivery reduced neurological deficits, infarct volume, brain edema, and neuronal injury in young and aged mice of both sexes, when delivered immediately postreperfusion or with 6 hours delay. MSC-sEVs decreased leukocyte and specifically polymorphonuclear neutrophil, monocyte, and macrophage infiltrates in ischemic brains of aged mice. In peripheral blood, the number of monocytes and activated T cells was significantly reduced by MSC-sEVs. CONCLUSIONS: MSC-sEVs induce postischemic neuroprotection and anti-inflammation in aged mice.


Assuntos
Envelhecimento/fisiologia , Vesículas Extracelulares/metabolismo , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Mesenquimais/citologia , Neuroproteção/fisiologia , Animais , Encéfalo/irrigação sanguínea , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia
20.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038749

RESUMO

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Assuntos
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Isquemia/metabolismo , Camundongos , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa