Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38754408

RESUMO

MOTIVATION: The technology for analyzing single-cell multi-omics data has advanced rapidly and has provided comprehensive and accurate cellular information by exploring cell heterogeneity in genomics, transcriptomics, epigenomics, metabolomics and proteomics data. However, because of the high-dimensional and sparse characteristics of single-cell multi-omics data, as well as the limitations of various analysis algorithms, the clustering performance is generally poor. Matrix factorization is an unsupervised, dimensionality reduction-based method that can cluster individuals and discover related omics variables from different blocks. Here, we present a novel algorithm that performs joint dimensionality reduction learning and cell clustering analysis on single-cell multi-omics data using non-negative matrix factorization that we named scMNMF. We formulate the objective function of joint learning as a constrained optimization problem and derive the corresponding iterative formulas through alternating iterative algorithms. The major advantage of the scMNMF algorithm remains its capability to explore hidden related features among omics data. Additionally, the feature selection for dimensionality reduction and cell clustering mutually influence each other iteratively, leading to a more effective discovery of cell types. We validated the performance of the scMNMF algorithm using two simulated and five real datasets. The results show that scMNMF outperformed seven other state-of-the-art algorithms in various measurements. AVAILABILITY AND IMPLEMENTATION: scMNMF code can be found at https://github.com/yushanqiu/scMNMF.


Assuntos
Algoritmos , Análise de Célula Única , Análise de Célula Única/métodos , Análise por Conglomerados , Humanos , Genômica/métodos , Biologia Computacional/métodos , Proteômica/métodos , Metabolômica/métodos , Epigenômica/métodos , Multiômica
2.
Nat Chem Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538923

RESUMO

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

3.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38842255

RESUMO

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.


Assuntos
Pelo Animal , Seleção Genética , Animais , Cães/genética , Polimorfismo de Nucleotídeo Único , Cruzamento , Suécia , Variação Genética , MicroRNAs/genética
4.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973083

RESUMO

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

5.
PLoS Comput Biol ; 20(4): e1012068, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683860

RESUMO

Cancer development is driven by an accumulation of a small number of driver genetic mutations that confer the selective growth advantage to the cell, while most passenger mutations do not contribute to tumor progression. The identification of these driver genes responsible for tumorigenesis is a crucial step in designing effective cancer treatments. Although many computational methods have been developed with this purpose, the majority of existing methods solely provided a single driver gene list for the entire cohort of patients, ignoring the high heterogeneity of driver events across patients. It remains challenging to identify the personalized driver genes. Here, we propose a novel method (PDRWH), which aims to prioritize the mutated genes of a single patient based on their impact on the abnormal expression of downstream genes across a group of patients who share the co-mutation genes and similar gene expression profiles. The wide experimental results on 16 cancer datasets from TCGA showed that PDRWH excels in identifying known general driver genes and tumor-specific drivers. In the comparative testing across five cancer types, PDRWH outperformed existing individual-level methods as well as cohort-level methods. Our results also demonstrated that PDRWH could identify both common and rare drivers. The personalized driver profiles could improve tumor stratification, providing new insights into understanding tumor heterogeneity and taking a further step toward personalized treatment. We also validated one of our predicted novel personalized driver genes on tumor cell proliferation by vitro cell-based assays, the promoting effect of the high expression of Low-density lipoprotein receptor-related protein 1 (LRP1) on tumor cell proliferation.


Assuntos
Biologia Computacional , Mutação , Neoplasias , Medicina de Precisão , Humanos , Neoplasias/genética , Biologia Computacional/métodos , Medicina de Precisão/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Modelos Genéticos , Bases de Dados Genéticas
6.
Immunology ; 171(4): 595-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205925

RESUMO

Host immunity can influence the composition of the gut microbiota and consequently affect disease progression. Previously, we reported that a Mycobacterium vaccae vaccine could ameliorate allergic inflammation in asthmatic mice by regulating inflammatory immune processes. Here, we investigated the anti-inflammatory effects of M. vaccae on allergic asthma via gut microbiota modulation. An ovalbumin (OVA)-induced asthmatic murine model was established and treated with M. vaccae. Gut microbiota profiles were determined in 18 BALB/c mice using 16S rDNA gene sequencing and metabolomic profiling was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Mycobacterium vaccae alleviated airway hyper-reactivity and inflammatory infiltration in mice with OVA-induced allergic asthma. The microbiota of asthmatic mice is disrupted and that this can be reversed with M. vaccae. Additionally, a total of 24 differential metabolites were screened, and the abundance of PI(14:1(9Z)/18:0), a glycerophospholipid, was found to be correlated with macrophage numbers (r = 0.52, p = 0.039). These metabolites may affect chemokine (such as macrophage chemoattractant protein-1) concentrations in the serum, and ultimately affect pulmonary macrophage recruitment. Our data demonstrated that M. vaccae might alleviate airway inflammation and hyper-responsiveness in asthmatic mice by reversing imbalances in gut microbiota. These novel mechanistic insights are expected to pave the way for novel asthma therapeutic strategies.


Assuntos
Asma , Microbioma Gastrointestinal , Mycobacteriaceae , Mycobacterium , Camundongos , Animais , Inflamação , Camundongos Endogâmicos BALB C , Ovalbumina , Modelos Animais de Doenças , Pulmão , Líquido da Lavagem Broncoalveolar
7.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598012

RESUMO

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Assuntos
Arabidopsis , MicroRNAs , RNA Longo não Codificante , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , Ácido Abscísico/farmacologia , Arabidopsis/genética , Manitol , MicroRNAs/genética , RNA Mensageiro , Triticum/genética , Ceras
8.
J Am Chem Soc ; 146(20): 14203-14212, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38733560

RESUMO

Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.


Assuntos
Antineoplásicos , Calixarenos , Portadores de Fármacos , Nanomedicina , Humanos , Portadores de Fármacos/química , Nanomedicina/métodos , Calixarenos/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Animais , Compostos Macrocíclicos/química , Camundongos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos
9.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654452

RESUMO

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Assuntos
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Família Multigênica , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
10.
J Hepatol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670321

RESUMO

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.

11.
Biochem Biophys Res Commun ; 700: 149535, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38308909

RESUMO

To compare the merits and drawbacks of three approaches for establishing a rabbit model of nonobstructive coronary microcirculatory disease, namely, open thoracic subtotal ligation of coronary arteries, ultrasound-guided cardiac microsphere injection, and sodium laurate injection. New Zealand rabbits were allocated to four groups: a normal group (Blank group), an Open-chest group (Open-chest), a microsphere group (Echo-M), and a sodium laurate group (Echo-SL), each comprising 10 rabbits. The rabbits were sacrificed 24 h after the procedures, and their echocardiography, stress myocardial contrast echocardiography, pathology, and surgical times were compared. The results demonstrated varying degrees of reduced cardiac function in all three experimental groups, the Open-chest group exhibiting the most significant decline. The myocardial filling in the affected areas was visually analyzed by myocardial contrast echocardiography, revealing sparse filling at rest but more after stress. Quantitative analysis of perfusion parameters (ß, A, MBF) in the affected myocardium showed reduced values, the Open-chest group having the most severe reductions. No differences were observed in stress myocardial acoustic imaging parameters between the Echo-M and Echo-SL groups. Among the pathological presentations, the Open-chest model predominantly exhibited localized ischemia, while the Echo-M model was characterized by mechanical physical embolism, and the Echo-SL model displayed in situ thrombosis as the primary pathological feature. Inflammatory responses and collagen deposition were observed in all groups, with the severity ranking of Open-chest > Echo-SL > Echo-M. The ultrasound-guided intracardiac injection method used in this experiment outperformed open-chest surgery in terms of procedural efficiency, invasiveness, and maneuverability. This study not only optimizes established cardiac injection techniques but also offers valuable evidence to support clinical investigations through a comparison of various modeling methods.


Assuntos
Doença da Artéria Coronariana , Circulação Coronária , Coelhos , Animais , Microcirculação , Circulação Coronária/fisiologia , Miocárdio/patologia
12.
BMC Med ; 22(1): 324, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113028

RESUMO

BACKGROUND: A stent with characteristics of a hybrid design may have advantages in improving the patency of symptomatic iliofemoral vein obstruction. This study assessed the safety and effectiveness of the V-Mixtent Venous Stent in treating symptomatic iliofemoral outflow obstruction. METHODS: Eligible patients had a Clinical-Etiologic-Anatomic-Physiologic (CEAP) C classification of ≥ 3 or a Venous Clinical Severity Score (VCSS) pain score of ≥ 2. The primary safety endpoint was the rate of major adverse events within 30 days. The primary effectiveness endpoint was the 12-month primary patency rate. Secondary endpoints included changes in VCSS from baseline to 6 and 12 months, alterations in CEAP C classification, Chronic Venous Disease Quality of Life Questionnaire (CIVIQ-14) scores at 12 months, and stent durability measures. RESULTS: Between December 2020 and November 2021, 171 patients were enrolled across 15 institutions. A total of 185 endovenous stents were placed, with 91.81% of subjects receiving one stent and 8.19% receiving 2 stents. Within 30 days, only two major adverse events occurred (1.17%; 95% confidence interval [CI], 0.14-4.16%), below the literature-defined performance goal of 11% (P < .001). The 12-month primary patency rate (91.36%; 95% CI, 85.93-95.19%; P < .001) exceeded the literature-defined performance goal. VCSS changes from baseline demonstrated clinical improvement at 6 months (- 4.30 ± 3.66) and 12 months (- 4.98 ± 3.67) (P < .001). Significant reduction in symptoms, as measured by CEAP C classification and CIVIQ-14, was observed from pre-procedure to 12 months (P < .001). CONCLUSIONS: The 12-month outcomes confirm the safety and effectiveness of the V-Mixtent Venous Stent in managing symptomatic iliofemoral venous outflow obstruction, including clinical symptom improvement compared to before treatment.


Assuntos
Veia Femoral , Veia Ilíaca , Stents , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Veia Femoral/cirurgia , Veia Ilíaca/cirurgia , Resultado do Tratamento , Adulto , Idoso , Qualidade de Vida
13.
Opt Express ; 32(8): 13809-13824, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859341

RESUMO

Mode coupling and device nonlinear impairment appear to be a long-standing challenge in the orbital angular momentum (OAM) mode division multiplexing (MDM) of intensity modulation direct detection (IM/DD) transmission systems. In this paper, we propose an end-to-end (E2E) learning strategy based on a frequency domain feature decoupling network (FDFDnet) emulator with joint probabilistic shaping (PS) and equalization for an OAM-MDM IM/DD transmission with three modes. Our FDFDnet emulator can accurately build a complex nonlinear model of an OAM-MDM system by separating the signal into features from different frequency domains. Furthermore, a FDFDnet-based E2E strategy for joint PS and equalization is presented with the aim of compensating the signal impairment for the OAM-MDM IM/DD system. An experiment is carried out on a 300 Gbit/s carrierless amplitude phase-32 (CAP-32) signal with three OAM modes over a 10 km ring-core fiber transmission, and the results show that the proposed FDFDnet emulator outperforms the traditional CGAN emulator, with improvements in the modelling accuracy of 30.8%, 26.3% and 31% for the three OAM modes. Moreover, the receiver sensitivity of the proposed E2E learning strategy is higher than for the CGAN emulator by 3, 2.5, 2.2 dBm and the real channel by 5.5, 5.1, and 5.3 dBm for the three OAM modes, respectively. Our experimental results demonstrate that the proposed FDFDnet emulator-based E2E learning strategy is a promising contender for achieving ultra-high-capacity interconnectivity between data centers.

14.
Opt Lett ; 49(5): 1205-1208, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426974

RESUMO

We propose a novel, to the best of our knowledge, scheme for dual vector millimeter-wave (mm-wave) signal generation and transmission, based on optical carrier suppression (OCS) modulation, precoding, and direct detection by a single-ended photodiode (PD). At the transmitter side, two independent vector radio frequency (RF) signals with precoding, generated via digital signal processing (DSP), are used to drive an in-phase/quadrature (I/Q) modulator operating at the optical OCS modulation mode to simultaneously generate two independent frequency-doubling optical vector mm-wave signals, which can reduce the bandwidth requirement of transmitter's components and enhance spectral efficiency. With the aid of the single-ended PD and subsequent DSP at the receiver side, two independent frequency-doubling vector mm-wave signals can be separated and demodulated without data error. Based on our proposed scheme, we experimentally demonstrate the generation, transmission, and detection of 2-Gbaud 30-GHz quadrature-phase-shift-keying (QPSK) and 2-Gbaud 46-GHz QPSK signals over 10-km single-mode fiber-28 (SMF-28) and 1-m wireless transmission. The results indicate that the bit-error ratio (BER) of the dual vector mm-wave signals can each reach the hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3.

15.
Opt Lett ; 49(3): 430-433, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300034

RESUMO

Stochastic nonlinear impairment is the primary factor that limits the transmission performance of high-speed orbital angular momentum (OAM) mode-division multiplexing (MDM) optical fiber communication systems. This Letter presents a low-complexity adaptive-network-based fuzzy inference system (LANFIS) nonlinear equalizer for OAM-MDM intensity-modulation direct-detection (IM/DD) transmission with three OAM modes and 15 wavelength division multiplex (WDM) channels. The LANFIS equalizer could adjust the probability distribution functions (PDFs) of the distorted pulse amplitude modulation (PAM) symbols to fit the statistical characteristics of the WDM-OAM-MDM transmission channel. Therefore, although the transmission symbols in the WDM-OAM-MDM system are subjected to a stochastic nonlinear impairment, the proposed LANFIS equalizer can effectively compensate the distorted signals. The proposed equalizer outperforms the Volterra equalizer with improvements in receiver sensitivity of 2, 1.5, and 1.3 dB for three OAM modes at a wavelength of 1550.12 nm, respectively. It also outperforms a CNN equalizer, with improvements in receiver sensitivity of 1, 0.5, and 0.3 dB, respectively. Moreover, complexity reductions of 67%, 74%, and 99.9% are achieved for the LANFIS equalizer compared with the Volterra, CNN, and ANFIS equalizers, respectively. The proposed equalizer has high performance and low complexity, making it a promising candidate for a high-speed WDM-OAM-MDM system.

16.
Cancer Cell Int ; 24(1): 179, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783335

RESUMO

BACKGROUND: Radiotherapy (RT) has been identified as a vital treatment for esophageal squamous cell carcinoma (ESCC), while the development of radioresistance remains a major obstacle in ESCC management. The aim of this study was to investigate the effect of NIMA-related kinase 2 (NEK2) on radioresistance in ESCC cells and to reveal potential molecular mechanisms. METHODS: Human esophageal epithelial cells (HEEC) and human ESCC cell lines were obtained from the Research Center of the Fourth Hospital of Hebei Medical University (Shijiazhuang, China). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were applied to assess the proliferation ability, cell cycle, apoptosis rates, and ROS production of ESCC cells. The colony-forming assay was used to estimate the effect of NEK2 on radiosensitivity. Autophagy was investigated by western blotting analysis, GFP-mRFP-LC3 fluorescence assay, and transmission electron microscopy (TEM). RESULTS: In the present study, our results showed that NEK2 was associated with radioresistance, cell cycle arrest, apoptosis, ROS production, and survival of ESCC. NEK2 knockdown could significantly inhibit growth while enhancing radiosensitivity and ROS production in ESCC cells. Interestingly, NEK2 knockdown inhibited ESCC cell autophagy and reduced autophagic flux, ultimately reversing NEK2-induced radioresistance. Mechanistically, NEK2 bound to and regulated the stability of tripartite motif-containing protein 21 (TRIM21). The accumulation of NEK2-induced light chain 3 beta 2 (LC3B II) can be reversed by the knockdown of TRIM21. CONCLUSION: These results demonstrated that NEK2 activated autophagy through TRIM21, which may provide a promising therapeutic strategy for elucidating NEK2-mediated radioresistance in ESCC.

17.
Phys Rev Lett ; 132(25): 256502, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996266

RESUMO

Charge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping effect has been leveraged to realize synaptic memory trees in nanoscale hydrogenated perovskite nickelates, opening a new direction for neuromorphic computing. To understand these phenomena, we formulate a physical phase-field model of the antidoping effect based on its microscopic mechanism and simulate the voltage-driven resistance change in the prototypical system of hydrogenated perovskite nickelates. Remarkably, the simulations using this model, containing only one adjustable parameter whose magnitude is justified by first-principles calculations, quantitatively reproduce the experimentally observed treelike resistance states, which are shown unambiguously to arise from proton redistribution-induced local band gap enhancement and carrier blockage. Our work lays the foundation for modeling the antidoping phenomenon in strongly correlated materials at the mesoscale, which can provide guidance to the design of novel antidoping-physics-based devices.

18.
Chemistry ; 30(28): e202400174, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38456376

RESUMO

We report the synthesis of a series of amphiphilic p-sulfonatocalix[4]arenes with varying alkyl chain lengths (CX4-Cn) and their application as efficient counterion activators for membrane transport of cell-penetrating peptides (CPPs). The enhanced membrane activity is confirmed with the carboxyfluorescein (CF) assay in vesicles and by the direct cytosolic delivery of CPPs into CHO-K1, HCT 116, and KTC-1 cells enabling excellent cellular uptake of the CPPs into two cancer cell lines. Intracellular delivery was confirmed by fluorescence microscopy after CPP entry into live cells mediated by CX4-Cn, which was also quantified after cell lysis by fluorescence spectroscopy. The results present the first systematic exploration of structure-activity relationships for calixarene-based counterion activators and show that CX4-Cn are exceptionally effective in cellular delivery of CPPs. The dodecyl derivative, CX4-C12, serves as best activator. A first mechanistic insight is provided by efficient CPP uptake at 4 °C and in the presence of the endocytosis inhibitor dynasore, which indicates a direct translocation of the CPP-counterion complexes into the cytosol and highlights the potential benefits of CX4-Cn for efficient and direct translocation of CPPs and CPP-conjugated cargo molecules into the cytosol of live cells.


Assuntos
Calixarenos , Peptídeos Penetradores de Células , Cricetulus , Calixarenos/química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Humanos , Células CHO , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Fenóis/química , Endocitose , Tensoativos/química
19.
J Org Chem ; 89(14): 9755-9768, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38935873

RESUMO

A nickel-catalyzed direct sulfonylation of alkenes with sulfonyl chlorides has been developed using 1,10-phenanthroline-5,6-dione as the ligand. Unactivated alkenes and styrenes including 1,1-, 1,2-disubstituted alkenes can be subjected to the protocol, and a wide range of vinyl sulfones was obtained in high to excellent yields with good functional group compatibility. Notably, the process did not allow the desulfonylation of sulfonyl chloride or chlorosulfonylation of alkenes. Radical-trapping experiment supported that a sulfonyl free-radical was likely produced and triggered subsequent transformation in the process.

20.
Neuroradiology ; 66(9): 1537-1551, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38676749

RESUMO

PURPOSE: The Centiloid project helps calibrate the quantitative amyloid-ß (Aß) load into a unified Centiloid (CL) scale that allows data comparison across multi-site. How the smaller regional amyloid converted into CL has not been attempted. We first aimed to express regional Aß deposition in CL using [18F]Flutemetamol and evaluate regional Aß deposition in CL with that in standardized uptake value ratio (SUVr). Second, we aimed to determine the presence or absence of focal Aß deposition by measuring regional CL in equivocal cases showing negative global CL. METHODS: Following the Centiloid project pipeline, Level-1 replication, Level-2 calibration, and quality control were completed to generate corresponding Centiloid conversion equations to convert SUVr into Centiloid at regional levels. In equivocal cases, the regional CL was compared with visual inspection to evaluate regional Aß positivity. RESULTS: 14 out of 16 regional conversions from [18F]Flutemetamol SUVr to Centiloid successfully passed the quality control, showing good reliability and relative variance, especially precuneus/posterior cingulate and prefrontal regions with good stability for Centiloid scaling. The absence of focal Aß deposition could be detected by measuring regional CL, showing a high agreement rate with visual inspection. The regional Aß positivity in the bilateral anterior cingulate cortex was most prevalent in equivocal cases. CONCLUSION: The expression of regional brain Aß deposition in CL with [18F]Flutemetamol has been attempted in this study. Equivocal cases had focal Aß deposition that can be detected by measuring regional CL.


Assuntos
Peptídeos beta-Amiloides , Compostos de Anilina , Benzotiazóis , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Peptídeos beta-Amiloides/metabolismo , Feminino , Masculino , Idoso , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Calibragem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa