Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Anal Chem ; 96(4): 1686-1692, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38118402

RESUMO

Fat mass and obesity-associated protein (FTO) plays a crucial role in regulating the dynamic modification of N6-methyladenosine (m6A) in eukaryotic mRNA. Sensitive detection of the FTO level and efficient evaluation of the FTO demethylase activity are of great importance to early cancer diagnosis and anticancer drug discovery, which are currently challenged by limited sensitivity/precision and low throughput. Herein, a robust strategy based on the dephosphorylation switch DNAzyme-rolling circle amplification (RCA) circuit, termed DSD-RCA, is developed for highly sensitive detection of FTO and inhibitor screening. Initially, the catalytic activity of DNAzyme is silenced by engineering with an m6A modification in its catalytic core. Only in the presence of target FTO can the methyl group on DNAzyme be eliminated, resulting in the activation of the catalytic activity of DNAzyme and thus cleaving the hairpin substrate to release numerous primers. Different from the conventional methods that use the downstream cleavage primer with the original 3'-hydroxyl end directly as the RCA primer with the problem of high background signal, which should be compensated by additional separation and wash steps in heterogeneous format, our DSD-RCA assay uses the upstream cleavage primer with a 2',3'-cyclic phosphate terminus at the 3'-end serving as an intrinsically blocked 3' end. Only after a dephosphorylation reaction mediated by T4 polynucleotide kinase can the upstream cleavage primers with a resultant 3'-hydroxyl end be extended by RCA. With the high signal-to-noise ratio and homogeneous property, the proposed platform can sensitively detect FTO with a limit of detection of 31.4 pM, and the relative standard deviations (RSDs %) ranging from 0.8 to 2.0% were much lower than the heterogeneous methods. The DSD-RCA method was applied for analyzing FTO in cytoplasmic lysates from different cell lines and tissues of breast cancer patients and further used for screening FTO inhibitors without the need for separation or cleaning, providing an opportunity for achieving high throughput and demonstrating the potential applications of this strategy in disease diagnostics, drug discovery, and biological applications.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Humanos , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Linhagem Celular , Polinucleotídeo 5'-Hidroxiquinase , Limite de Detecção , Dioxigenase FTO Dependente de alfa-Cetoglutarato
2.
Anal Chem ; 95(39): 14746-14753, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37723832

RESUMO

The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of "always active" nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane logic DNA (TLD) nanodevice that enables dual-biomarker sensing of tumor-related nucleolin and intracellular microRNA for highly specific cancer cell imaging. The TLD nanodevice is constructed by assembling a tetrahedral DNA nanostructure containing a linker (L)-blocker (B)-DNAzyme (D)-substrate (S) unit. AS-apt, a DNA strand containing an elongated segment and the AS1411 aptamer, is pre-anchored to nucleolin protein, which is specifically expressed on the membrane of cancer cells. Initially, the TLD nanodevice is firmly sealed by the blocker containing an AS-apt recognition zone, which prevents off-site activation. When the nanodevice encounters a target cancer cell, AS-apt (input 1) binds to the blocker and unlocks the sensing ability of the nanodevice for miR-21 (input 2). The TLD nanodevice achieves dual-biomarker sensing from the cell membrane to the cytoplasm, thereby ensuring cancer cell-specific imaging. This TLD nanodevice represents a promising strategy for the highly reliable analysis of intracellular biomarkers and a promising platform for cancer diagnosis and related biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico por imagem , DNA/química , Fosfoproteínas , Nucleolina
3.
Anal Chem ; 95(31): 11793-11799, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402285

RESUMO

Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , DNA Catalítico/metabolismo , Compostos de Manganês , Óxidos , Catálise , Técnicas Biossensoriais/métodos , Limite de Detecção
4.
Nano Lett ; 21(2): 973-979, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33372805

RESUMO

Subwavelength nanostructures with tunable compositions and geometries show favorable optical functionalities for the implementation of nanophotonic systems. Precise and versatile control of structural configurations on solid substrates is essential for their applications in on-chip devices. Here, we report all-solid-phase reconfigurable chiral nanostructures with silicon nanoparticles and nanowires as the building blocks in which the configuration and chiroptical response can be tailored on-demand by dynamic manipulation of the silicon nanoparticle. We reveal that the optical chirality originates from the handedness-dependent coupling between optical resonances of the silicon nanoparticle and the silicon nanowire via numerical simulations and coupled-mode theory analysis. Furthermore, the coexisting electric and magnetic resonances support strong enhancement of optical near-field chirality, which enables label-free enantiodiscrimination of biomolecules in single nanostructures. Our results not only provide insight into the design of functional high-index materials but also bring new strategies to develop adaptive devices for photonic and electronic applications.


Assuntos
Nanopartículas , Nanoestruturas , Óptica e Fotônica , Fótons , Silício
5.
Small ; 11(33): 4037-57, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26114572

RESUMO

The successful development of nanoscale machinery, which can operate with high controllability, high precision, long lifetimes, and tunable driving powers, is pivotal for the realization of future intelligent nanorobots, nanofactories, and advanced biomedical devices. However, the development of nanomachines remains one of the most difficult research areas, largely due to the grand challenges in fabrication of devices with complex components and actuation with desired efficiency, precision, lifetime, and/or environmental friendliness. In this work, the cutting-edge efforts toward fabricating and actuating various types of nanomachines and their applications are reviewed, with a special focus on nanomotors made from inorganic nanoscale building blocks, which are introduced according to the employed actuation mechanism. The unique characteristics and obstacles for each type of nanomachine are discussed, and perspectives and challenges of this exciting field are presented.


Assuntos
Indústria Manufatureira/tendências , Microtecnologia , Nanoestruturas , Nanotecnologia/tendências , Humanos , Membranas Artificiais , Microtecnologia/métodos , Nanoestruturas/química , Nanoestruturas/estatística & dados numéricos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanofios/química , Pinças Ópticas
6.
ACS Omega ; 9(2): 2606-2614, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250387

RESUMO

In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.

7.
Nutrients ; 16(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408249

RESUMO

BACKGROUND: Advanced glycation end products (AGEs), a group of food processing byproducts, have been implicated in the development of various diseases. However, the relationship between circulating AGEs and sleep disorders remains uncertain. METHODS: This cross-sectional study elucidated the association of plasma AGEs with sleep disorders among 1732 Chinese adults who participated in the initial visit (2019-2020) of the Tongji-Shenzhen Cohort (TJSZC). Sleep behavior was assessed using self-reported questionnaires and precise accelerometers. Plasma levels of AGEs, including Nε-(Carboxymethyl)lysine (CML), Nε-(Carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1), were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: In logistic regression, per IQR increment in individual AGEs was associated with an increased odds ratio of short sleep duration (CML: 1.11 [1.00, 1.23]; CEL: 1.16, [1.04, 1.30]), poor sleep quality (CML: 1.33 [1.10, 1.60]; CEL: 1.53, [1.17, 2.00]; MG-H1: 1.61 [1.25, 2.07]), excessive daytime sleepiness (CML: 1.33 [1.11, 1.60]; MG-H1: 1.39 [1.09, 1.77]), and insomnia (CML: 1.29 [1.05, 1.59]). Furthermore, in weighted quantile sum regression and Bayesian kernel machine regression analyses, elevated overall exposure levels of plasma AGEs were associated with an increased risk of sleep disorders, including short sleep duration, poor sleep quality, excessive daytime sleepiness, and insomnia, with CML being identified as the leading contributor. Insufficient vegetable intake and higher dietary fat intake was associated with an increase in plasma CEL. CONCLUSIONS: These findings support a significant association between plasma AGEs and sleep disorders, indicating that AGEs may adversely influence sleep health and reducing the intake of AGEs may facilitate preventing and ameliorating sleep disorders.


Assuntos
Produtos Finais de Glicação Avançada , Transtornos do Sono-Vigília , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Estudos Transversais , População do Leste Asiático , Produtos Finais de Glicação Avançada/sangue , Lisina/análogos & derivados , Lisina/sangue , Ornitina/análogos & derivados , Transtornos do Sono-Vigília/sangue , Espectrometria de Massas em Tandem
8.
Biosens Bioelectron ; 241: 115669, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688849

RESUMO

Autocatalytic biocircuit are powerful tools for analysing intracellular biomarkers, but these tools are constrained by limitations in amplification capacity and intracellular delivery efficiency. In this work, we developed a DNAzyme-based dual-feedback autocatalytic exponential amplification biocircuit sustained by a honeycomb MnO2 nanosponge (EDA2@hMNS) for live-cell imaging of intracellular low-abundance microRNAs (miRNA). The EDA2 biocircuit comprises a blocked DNAzyme (b-DNAzyme), a Fuel strand and a Substrate strand. In the EDA2 biocircuit, target miRNAs are recycled and feedback for rounds of DNAzymatic amplification, and the DNAzymatic reactions continuously generate target miRNA analogues for dual-feedback to achieve multiple parallel cascade DNAzymatic reactions that improve amplification capacity substantially. In addition, the hMNS ensures high loading and delivery efficiency of biocircuit probes into living cells and also provides sufficient Mn2+ DNAzyme cofactor from in situ decomposition by intracellular glutathione (GSH). The EDA2@hMNS realized a detection limit of 17 pM, which is 288-fold lower than the b-DNAzyme lacking the DNAzymatic amplification. These results demonstrate the great promise for this critical tool in analysing low-abundance biomarkers and cancer diagnostics.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , MicroRNAs/análise , DNA Catalítico/química , Retroalimentação , Compostos de Manganês/química , Técnicas Biossensoriais/métodos , Óxidos/química , Biomarcadores , Técnicas de Amplificação de Ácido Nucleico/métodos
9.
Adv Mater ; 34(30): e2203082, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35656917

RESUMO

2D transition-metal-dichalcogenide materials, such as molybdenum disulfide (MoS2 ) have received immense interest owing to their remarkable structure-endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2  with anatase TiO2  is successfully integrated into an original one-side-open hollow micromachine, which demonstrates increased light absorption of TiO2 -based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type-II bandgap alignment of MoS2 /TiO2  heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2 /TiO2 , the micromachines achieve sunlight-powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.


Assuntos
Molibdênio , Dispositivos Eletrônicos Vestíveis , Catálise , Desinfecção , Eletrônica , Molibdênio/química
10.
ACS Nano ; 14(11): 15204-15215, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33095572

RESUMO

Vigorous research efforts have advanced the state-of-the-art nanosensors with ultrahigh sensitivity for bioanalysis. However, a dilemmatic challenge remains: it is extremely difficult to obtain nanosensors that are both sensitive and high-speed for the detection of low-concentration molecules in aqueous samples. Herein, we report how the controlled mechanical rotation (or rotary motorization) of designed opto-plasmonic microsensors can substantially and robustly accelerate the enrichment and detection speed of deoxyribonucleic acid (DNA) with retained high sensitivity. At least 4-fold augmentation of the capture speed of DNA molecules is obtained from a microsensor rotating at 1200 rpm. Theoretical analysis and modeling shed light on the underlying working mechanism, governed by the molecule-motor-flow interaction as well as its application range and limitation. This work provides a device scheme that alleviates the dilemmatic challenge in biomolecule sensing and offers the understanding of the complex interactions of molecules and moving microobjects in suspension. The results may assist the rational design of efficient microrobotic systems for the capture, translocation, sensing, and release of biocargoes.


Assuntos
Aceleração , Rotação
11.
Nat Commun ; 10(1): 5672, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831746

RESUMO

Constructing colloidal particles into functional nanostructures, materials, and devices is a promising yet challenging direction. Many optical techniques have been developed to trap, manipulate, assemble, and print colloidal particles from aqueous solutions into desired configurations on solid substrates. However, these techniques operated in liquid environments generally suffer from pattern collapses, Brownian motion, and challenges that come with reconfigurable assembly. Here, we develop an all-optical technique, termed optothermally-gated photon nudging (OPN), for the versatile manipulation and dynamic patterning of a variety of colloidal particles on a solid substrate at nanoscale accuracy. OPN takes advantage of a thin surfactant layer to optothermally modulate the particle-substrate interaction, which enables the manipulation of colloidal particles on solid substrates with optical scattering force. Along with in situ optical spectroscopy, our non-invasive and contactless nanomanipulation technique will find various applications in nanofabrication, nanophotonics, nanoelectronics, and colloidal sciences.


Assuntos
Coloides/química , Nanoestruturas/química , Óptica e Fotônica/métodos , Fótons , Fenômenos Biofísicos , Movimento (Física) , Tamanho da Partícula , Tensoativos/química , Temperatura
12.
ACS Nano ; 12(2): 1179-1187, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29303550

RESUMO

We report a controllable and precision approach in manipulating catalytic nanomotors by strategically applied electric (E-) fields in three dimensions (3-D). With the high controllability, the catalytic nanomotors have demonstrated versatility in capturing, delivering, and releasing of cargos to designated locations as well as in situ integration with nanomechanical devices (NEMS) to chemically power the actuation. With combined AC and DC E-fields, catalytic nanomotors can be accurately aligned by the AC E-fields and effectively change their speeds instantly by the DC E-fields. Within the 3-D orthogonal microelectrode sets, the in-plane transport of catalytic nanomotors can be swiftly turned on and off, and these catalytic nanomotors can also move in the vertical direction. The interplaying nanoforces that govern the propulsion and alignment are investigated. The modeling of catalytic nanomotors proposed in previous works has been confirmed quantitatively here. Finally, the prowess of the precision manipulation of catalytic nanomotors by E-fields is demonstrated in two applications: the capture, transport, and release of cargos to prepatterned microdocks, and the assembly of catalytic nanomotors on NEMS to power the continuous rotation. The concepts and approaches reported in this work could further advance applications of catalytic nanomotors, e.g., for assembling and powering nanomachines, nanorobots, and complex NEMS devices.

13.
J Phys Chem Lett ; 7(7): 1392-9, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27014923

RESUMO

Lithium-sulfur batteries with a high energy density are being considered a promising candidate for next-generation energy storage. However, realization of Li-S batteries is plagued by poor sulfur utilization due to the shuttle of intermediate lithiation products between electrodes and its dynamic redistribution. To optimize the sulfur utilization, an understanding of its redox behavior is essential. Herein, we report a gel cathode consisting of a polysulfide-impregnated O- and N-doped porous carbon and an independent, continuous, and highly conducting 3-dimensional graphite film as the charge-transfer network. This design decouples the function of electron conduction and polysulfide absorption, which is beneficial for understanding the sulfur redox behavior and identifying the dominant factors leading to cell failure when the cells have high sulfur content and insufficient electrolyte. This design also opens up new prospects of tuning the properties of Li-S batteries via separately designing the material functions of electron conduction and polysulfide absorption.

14.
Nanoscale ; 8(20): 10471-90, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27152885

RESUMO

The development of rotary nanomotors is an essential step towards intelligent nanomachines and nanorobots. In this article, we review the concept, design, working mechanisms, and applications of state-of-the-art rotary nanomotors made from synthetic nanoentities. The rotary nanomotors are categorized according to the energy sources employed to drive the rotary motion, including biochemical, optical, magnetic, and electric fields. The unique advantages and limitations for each type of rotary nanomachines are discussed. The advances of rotary nanomotors is pivotal for realizing dream nanomachines for myriad applications including microfluidics, biodiagnosis, nano-surgery, and biosubstance delivery.

15.
ACS Nano ; 9(1): 548-54, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25536023

RESUMO

In this study, we investigated the control of the rotation dynamics of an innovative type of rotary micromotors with desired performances by tuning the magnetic interactions among the assembled micro/nanoscale components. The micromotors are made of metallic nanowires as rotors, patterned magnetic nanodisks as bearings and actuated by external electric fields. The magnetic forces for anchoring the rotors on the bearings play an essential role in the rotation dynamics of the micromotors. By varying the moment, orientation, and dimension of the magnetic components, distinct rotation behaviors can be observed, including repeatable wobbling and rolling in addition to rotation. We understood the rotation behaviors by analytical modeling, designed and realized micromotors with step-motor characteristics. The outcome of this research could inspire the development of high-performance nanomachines assembled from synthetic nanoentities, relevant to nanorobotics, microfluidics, and biomedical research.


Assuntos
Fenômenos Magnéticos , Microtecnologia/instrumentação , Nanotecnologia/instrumentação , Rotação , Análise de Fourier , Ouro/química , Nanofios , Níquel/química
16.
Nanoscale ; 7(26): 11363-70, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26073977

RESUMO

Recently, we reported an innovative type of micromotors consisting of nanowires as rotors and patterned Au/Ni/Cr nanodisks as bearings. The dimensions of micromotors were less than 1 µm, and could continuously rotate for 15 hours over 240 000 cycles. To understand the limitation of their lifetime, we systematically investigated the rotation dynamics by analytical modeling and determined the time-dependent torques and forces involved in the rotation. From the forces and torques, the extent of wear of micromotors was successfully derived, which agreed well with the experimental characterization. The results also proved that the frictional force linearly increases with the loading in such rotary nanodevices operating in suspension, consistent with the prediction of the non-adhesive multi-asperity friction theory. With these understandings, we enhanced the design of micromotors and achieved an operation lifetime of 80 hours and over 1.1 million total rotation cycles. This research, shedding new light on the frictional mechanism of recently reported nanowire micromotors with demonstration of the most durable rotary nanomechanical devices of similar dimensions to the best of our knowledge, can be inspiring for innovative design of future nanomechanical devices with ultra-long lifetime for practical applications.


Assuntos
Nanoestruturas , Rotação , Tamanho da Partícula
17.
Nat Commun ; 5: 3632, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24709694

RESUMO

The development of rotary nanomotors is crucial for advancing nanoelectromechanical system technology. In this work, we report design, assembly and rotation of ordered arrays of nanomotors. The nanomotors are bottom-up assembled from nanoscale building blocks with nanowires as rotors, patterned nanomagnets as bearings and quadrupole microelectrodes as stators. Arrays of nanomotors rotate with controlled angle, speed (over 18,000 r.p.m.), and chirality by electric fields. Using analytical modelling, we reveal the fundamental nanoscale electrical, mechanical and magnetic interactions in the nanomotor system, which excellently agrees with experimental results and provides critical understanding for designing metallic nanoelectromechanical systems. The nanomotors can be continuously rotated for 15 h over 240,000 cycles. They are applied for controlled biochemical release and demonstrate releasing rate of biochemicals on nanoparticles that can be precisely tuned by mechanical rotations. The innovations reported in this research, from concept, design and actuation to application, are relevant to nanoelectromechanical system, nanomedicine, microfluidics and lab-on-a-chip architectures.

18.
Nanoscale ; 5(5): 1993-2001, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23370116

RESUMO

Micron-sized hexagonal single-crystalline Sc(3)N@C(80) rods have been successfully prepared for the first time by a liquid-liquid interfacial precipitation (LLIP) method with the first utilization of p-xylene as the solvent dissolving Sc(3)N@C(80). The effect of the concentration of the Sc(3)N@C(80) solution on the size and length of the Sc(3)N@C(80) rods has been studied, indicating that the length of Sc(3)N@C(80) rods can be readily controlled by varying the concentration of the Sc(3)N@C(80) solution. The crystal structure of the Sc(3)N@C(80) rods has been investigated by XRD and the electron diffraction patterns, pointing to a hexagonal system. The growth kinetics of the Sc(3)N@C(80) rods has been studied by monitoring the morphology evolution of the Sc(3)N@C(80) crystals, and a plausible mechanism is proposed, featuring an intermediate hexagonal star-shaped prism structure with grooves. Raman spectroscopic characterization confirmed that the Sc(3)N@C(80) rods are composed of monomeric pristine Sc(3)N@C(80) molecules and no polymerization has occurred in the crystal lattice, and a significant Raman enhancement in the low-energy region is observed. According to the UV-vis-NIR absorption spectroscopic study of the Sc(3)N@C(80) rods, where much broader and stronger absorptions in the visible and near-infrared regions than that of the Sc(3)N@C(80) solution were revealed, we conclude that the electronic structure of the Sc(3)N@C(80) molecule is largely perturbed upon formation of micron-sized single-crystalline rods because of the strong intermolecular π-π interactions. Finally photoelectrochemical application of the Sc(3)N@C(80) rods was studied based on a Sc(3)N@C(80) rods-modified ITO electrode prepared by electrophoretic deposition and revealed a higher photocurrent response than that obtained in the Sc(3)N@C(80) films drop-coated onto an ITO electrode.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa