Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(35): 14492-7, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940322

RESUMO

The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang-You-Pei-Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93-11 and maternal cultivar PA64s of Liang-You-Pei-Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


Assuntos
Genoma de Planta , Hibridização Genética , Oryza/genética , Recombinação Genética , Ligação Genética , Locos de Características Quantitativas
2.
BMC Genomics ; 14: 579, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23984715

RESUMO

BACKGROUND: Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed. RESULTS: A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits. The selection regions were not distributed randomly or uniformly throughout the genome. Instead, clusters of selection hotspots in certain genomic regions were observed. Moreover, a set of candidate genes (4.38% of the total annotated genes) significantly affected by selection underlying soybean domestication and genetic improvement were identified. CONCLUSIONS: Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes/loci underlying agronomically important traits.


Assuntos
Genoma de Planta , Glycine max/genética , Teorema de Bayes , Cruzamento , Evolução Molecular , Genética Populacional , Haplótipos , Humanos , Mutação INDEL , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Análise de Sequência de DNA
3.
Genes (Basel) ; 10(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284503

RESUMO

The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination. Here, we applied whole-genome sequencing data from 12 ancient samples with ages ranging from 2.7 to 700 kya to compare different mapping algorithms, and tested different reference databases, mapping similarities and query coverage to explore the best method and mapping parameters that can improve the accuracy of ancient mammal species identification. The selected method and parameters were tested using 152 ancient samples, and 150 of the samples were successfully identified. We further screened the BLAST-based mapping results according to the deamination characteristics of ancient DNA to improve the ability of ancient species identification. Our findings demonstrate a marked improvement to the normal procedures used for ancient species identification, which was achieved through defining the mapping and filtering guidelines to identify true ancient DNA sequences. The guidelines summarized in this study could be valuable in archaeology, paleontology, evolution, and forensic science. For the convenience of the scientific community, we wrote a software script with Perl, called AncSid, which is made available on GitHub.


Assuntos
Cabras/genética , Cavalos/genética , Mamutes/genética , Ruminantes/genética , Algoritmos , Animais , DNA Mitocondrial , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paleontologia
4.
Genome Biol ; 12(11): R114, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22104744

RESUMO

BACKGROUND: Sorghum (Sorghum bicolor) is globally produced as a source of food, feed, fiber and fuel. Grain and sweet sorghums differ in a number of important traits, including stem sugar and juice accumulation, plant height as well as grain and biomass production. The first whole genome sequence of a grain sorghum is available, but additional genome sequences are required to study genome-wide and intraspecific variation for dissecting the genetic basis of these important traits and for tailor-designed breeding of this important C4 crop. RESULTS: We resequenced two sweet and one grain sorghum inbred lines, and identified a set of nearly 1,500 genes differentiating sweet and grain sorghum. These genes fall into ten major metabolic pathways involved in sugar and starch metabolisms, lignin and coumarin biosynthesis, nucleic acid metabolism, stress responses and DNA damage repair. In addition, we uncovered 1,057,018 SNPs, 99,948 indels of 1 to 10 bp in length and 16,487 presence/absence variations as well as 17,111 copy number variations. The majority of the large-effect SNPs, indels and presence/absence variations resided in the genes containing leucine rich repeats, PPR repeats and disease resistance R genes possessing diverse biological functions or under diversifying selection, but were absent in genes that are essential for life. CONCLUSIONS: This is a first report of the identification of genome-wide patterns of genetic variation in sorghum. High-density SNP and indel markers reported here will be a valuable resource for future gene-phenotype studies and the molecular breeding of this important crop and related species.


Assuntos
Grão Comestível/genética , Variação Genética , Genoma de Planta , Sorghum/genética , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Resistência à Doença , Perfilação da Expressão Gênica , Marcadores Genéticos , Genótipo , Mutação INDEL , Dados de Sequência Molecular , Fenótipo , Sorghum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa