Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Res ; 252(Pt 1): 118779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552825

RESUMO

Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.


Assuntos
Substâncias Húmicas , Compostos de Ferro , Minerais , Oxirredução , Piretrinas , Substâncias Húmicas/análise , Minerais/química , Compostos de Ferro/química , Piretrinas/química , Fotólise , Inseticidas/química
2.
J Environ Manage ; 351: 119900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157580

RESUMO

The accurate prediction and assessment of effluent quality in wastewater treatment plants (WWTPs) are paramount for the efficacy of sewage treatment processes. Neural network models have exhibited promise in enhancing prediction accuracy by simulating and analyzing diverse influent parameters. In this study, a back propagation neural network hybrid model based on a tent chaotic map and sparrow search algorithm (Tent_BP_SSA) was developed to predict the effluent quality of sewage treatment processes. The prediction performance of the propose hybrid model was compared with traditional neural network models using five performance indicators (MAE, RMSE, SSE, MAPE and R2). Specifically, in comparison with the prior Tent_BP_SSA, Tent_BP_SSA2 demonstrated notable enhancements, with the R2 increasing from 0.9512 to 0.9672, while MAE, RMSE, SSE, and MAPE decreased by 9.62%, 18.84%, 24.80%, and 47.10%, respectively. These indicators collectively affirm that the utilization of higher-order input parameters ensures improved accuracy of the Tent_BP_SSA2 hybrid model in predicting effluent quality. Moreover, the Tent_BP_SSA2 model exhibited robust prediction ability (R2 of 0.9246) when applied to assess the effluent quality of an actual sewage treatment plant. The incorporation of integrated models comprising the sparrow search optimizing algorithm, tent chaotic mapping, and higher-order magnitude decomposition of input parameters has demonstrated the capacity to enhance the accuracy of effluent quality prediction. This study illuminates novel perspectives on the prediction of effluent quality and the assessment of effluent warnings in WWTPs.


Assuntos
Esgotos , Purificação da Água , Redes Neurais de Computação , Algoritmos
3.
J Environ Manage ; 328: 116924, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525736

RESUMO

The activated sludge process of an actual municipal sewage treatment plant was systematically modeled, calibrated, and verified in this study. Identified multi-objective optimization (MOO) methods were employed to optimize the process parameters of the validated model, and the optimal MOO algorithm was obtained by comparing Pareto solution sets. The optimization model consisted of three key evaluation indicators (objective functions), which are the average effluent quality (AEQ), overall cost index (OCI), and total volume (TV) of the biochemical tank, along with 12 more process parameters (decision variables). Three optimization algorithms, i.e., adaptive non-dominated sorting genetic algorithm III (ANSGA-III), non-dominated sorting genetic algorithm II (NSGA-II), and particle swarm algorithm (PSO), were adopted using MATLAB. The comparison of these algorithms demonstrated that the ANSGA-III algorithm had better Pareto solution sets under the triple objective optimization, and the effluent quality of COD, TN, NH4+-N, and TP after optimization decreased by 2.22, 0.47, 0.13, and 0.02 mg/L, respectively. Additionally, the simulated AEQ was reduced by 13% compared to the original effluent, and the OCI and TV decreased from 21,023 kWh d-1 and 17,065 m3 to 20,226 kWh d-1 and 16,530 m3, respectively. The reported ANSGA-III algorithm and the proposed multi-objective method have a promising ability for energy conservation, emission reduction, and upgrading of municipal sewage treatment plants.


Assuntos
Algoritmos , Esgotos
4.
J Environ Manage ; 316: 115217, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561494

RESUMO

The wide use of nano metal oxide particles (NMOPs) brings about their inevitable release into the water environment, affecting the environment and human health. Therefore, the stability, aggregation, and sedimentation process of four typical NMOPs (ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs) were investigated in artificial water and real municipal sewage to reveal their complicated behavior. Results showed that NMOPs aggregated at the pH of zero-charge point, and their hydrodynamic diameters and aggregation rates could reach the maximum values. The hydrodynamic diameters and aggregation rates of ZnO NPs, CeO2 NPs, TiO2 NPs, and CuO NPs at the zero-charge point were 617, 1760, 870, 1502 nm, and 31.7, 1158.1, 48.3, 115.7 nm/min, respectively. In addition, the dissolution of NMOPs led to the sedimentation rates under acidic conditions being much lower than those under neutral and alkaline conditions. The aggregation and sedimentation performance of NMOPs were affected by not only pH but also ionic strength (IS) and species. The aggregation rates of NMOPs increased with the increase of IS (0-10 mM), and the maximum aggregation rate of CeO2 NPs was 470.1 nm/min (pH = 7 and CaCl2 = 10 mM). According to Coulomb's law, divalent cations (Mg2+, Ca2+) were more competitively adsorbed on the surface of NMOPs than monovalent cations (K+, Na+), which increased the zeta potential and aggregation rate of NMOPs. Furthermore, the NMOPs were easier to aggregate in municipal sewage because of the homogeneous aggregation between nanoparticles and heterogeneous aggregation with natural colloids. The total interaction energy between NMOPs was calculated by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, which was consistent with the experimental results.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Óxidos , Esgotos , Água
5.
Environ Res ; 195: 110861, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600822

RESUMO

Cerium dioxide nanoparticles (CeO2 NPs) are ubiquitous in the water environment due to the extensive commercial applications. The complexity of heterogeneous humic acid (HA) plays a significant role in affecting the physicochemical properties of CeO2 NPs in aqueous environments. However, the effects of light intensities and HA fractions on the interaction mechanism between CeO2 NPs and HA are poorly understood. Here, we provided the evidence that both light intensities (>3 E L-1 s-1) and molecular weights (>10 kDa) can effectively affect the interactions between CeO2 NPs and HA. The absolute content of reactive oxygen species (ROS) and quantum yield (Φ) of 3HA* were inhibited when HA (10 mg of C L-1) interacts with CeO2 NPs. However, they were positively correlated with the increasing irradiation time and simulated sunlight intensities. High molecular weights of HA fraction (>100 kDa) restrained the ROS generation and Φ of 3HA* due to surface adsorption between HA and CeO2 NPs blocking reactive sites, competitive absorption for simulated sunlight. Fourier transform infrared and three-dimensional excitation-emission matrix fluorescence spectroscopy confirmed that the carboxylic groups of HA have high complexation capacity with CeO2 NPs. These findings are essential for us to improve the understanding of the impacts of HA on CeO2 NPs under different conditions in natural waters.


Assuntos
Cério , Nanopartículas , Substâncias Húmicas/análise , Peso Molecular
6.
Environ Res ; 191: 110086, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32846168

RESUMO

The widespread applications of zinc oxide nanoparticles (ZnO NPs) have raised increasing concerns due to their adverse environmental effects. The ubiquitous natural organic matter in natural aqueous environments can interact with ZnO NPs, thereby affecting their aggregation, sedimentation and biotoxicity. Here, we systematically investigated the effects of humic acid (HA) and sodium alginate (SA) on the aggregation behavior of ZnO NPs and their biotoxicity to Daphnia magna. High concentrations (9.0 mg/L) of HA and SA accelerated the aggregation of ZnO NPs with maximum aggregation rates (ΔD/Δt) of 22.1 and 19.2 nm/min, respectively. Both HA and SA led to 31.2% and 30.1% decrease of ZnO NPs concentration compared with the control experiment. The results calculated by Derjaguin-Landau-Verwey-Overbeek theoretical formula were consistent with these of aggregation and sedimentation of ZnO NPs. Furthermore, excitation-emission-matrix fluorescence spectroscopy verified that the carboxylic groups of HA and SA have high complexation capacity with ZnO NPs. Daphnia magna was used to evaluate the biotoxicity of ZnO NPs, and the toxicity of ZnO NPs to Daphnia magna was alleviated as the HA concentration increased from 0 to 1.2 mg/L. Toxicity mitigation experiments confirmed that photocatalytic generation of reactive oxygen species was more toxic to Daphnia magna than dissolved Zn2+ in acute and chronic toxicity tests. Moreover, the attacks of active oxygen free radical damaged the antioxidant system of Daphnia magna. The information obtained will help us to improve the understanding of the impacts of ZnO NPs on freshwater ecosystems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Alginatos/toxicidade , Animais , Daphnia , Ecossistema , Substâncias Húmicas/análise , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
7.
Environ Res ; 186: 109503, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302867

RESUMO

Adding alkaline into an anaerobic waste activated sludge (WAS) fermentation with thermophilic bacteria pretreatment could efficiently improve short-chain fatty acids (SCFAs) accumulation to 3550 ± 120 mg COD/L. The acidification rate in combined test was 21.2%, while that was 15.6% and 10.7% in sole thermophilic bacteria pretreatment and control tests respectively. Four distinct groups of microbes could be identified with noticeable shifts using the combined pretreatments, and tremendous effects were analyzed on organic content especially of the soluble proteins and SCFAs concentrations. Particularly, alkaline addition would significantly change the functional microbial structures, including the decrease of Caloramator with the function of thermophilic proteolytic and the increase of Acidobacteria TM7 and Petrimonas sp. The results above suggested that alkaline addition could decrease the hydrolytic substances consume by thermotolerance bacteria and final improve SCFAs accumulation in fermentation process.


Assuntos
Microbiota , Esgotos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise
8.
Water Sci Technol ; 70(2): 200-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25051465

RESUMO

Hydrolysis is known as the rate-limiting step during waste activated sludge (WAS) digestion. The optimization of the culture conditions of Geobacillus sp. G1 for enhancing WAS hydrolysis was conducted in this study with uniform design and response surface methodology. Taking the lysis rate of Escherichia coli as the response, the Plackett-Burman design was used to screen the most important variables. Experimental results showed that the maximum predicted lysis rate of E. coli was 50.9% for 4 h treatment time with concentrations of skim milk, NaCl and NH4SO4 at 10.78, 4.36 and 11.28 g/L, respectively. The optimized dosage ratio of Geobacillus sp. G1 to WAS was 35%:65% (VG1:VWAS). Under this condition, soluble protein was increased to 695 mg chemical oxygen demand (COD)/L, which was 5.0 times higher than that obtained in the control (140 mg COD/L). The corresponding protease activity reached 1.1 Eu/mL. Scanning electron microscopy showed that abundant cells were apparently lysed with treatment of Geobacillus sp. G1.


Assuntos
Geobacillus/fisiologia , Esgotos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Escherichia coli/fisiologia , Microscopia Eletrônica de Varredura
9.
Environ Sci Ecotechnol ; 20: 100410, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38572083

RESUMO

Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.

10.
Bioresour Technol ; 388: 129747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717705

RESUMO

The influent quality is an important factor affecting the nutrients removal and operational stability of denitrifying phosphorus removal (DPR) system. This study investigated the effects of calcium ion (Ca2+) on the nutrients removal, nitrogen oxide (N2O) release, microbial community, and quorum sensing in DPR system. Results showed that high accumulation of Ca2+ had a significant impact on the carbon footprint of DPR system. Specifically, N2O release reached 2.11 mg/L under Ca2+ of 150 mg/L, which represented 214.93% increase compared to 0 mg/L of Ca2+. The DPR system demonstrated its adaptability to elevated Ca2+ concentrations by modifying key enzyme activities involved in nitrogen and phosphorus removal, altering the microbial community structure, and adjusting the type and content of signal molecules. These findings hold significant implications for understanding the stress mechanism of Ca2+ on DPR system, ultimately aiding in the maintenance and enhancement of stable operational performance in biological wastewater treatment process.

11.
Water Res ; 228(Pt B): 119381, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36434973

RESUMO

Marine pollution caused by the untreated and substandard discharge of ship domestic sewage has received widespread attention. A novel integrated process for struvite recovery and nutrient removal from ship domestic sewage (SRNR-SDS) based on seawater magnesium source was developed in this study. Removal efficiencies of the total nitrogen (TN) and total phosphorus (TP) for the activated sludge unit in SRNR-SDS process were approximately 67.61% and 41.35%, respectively, under the salinity of 7.85 g/L. The coupling-induced struvite crystallization unit significantly improved the removal efficiency of TN and TP, and the scanning electron microscopy and X-ray diffraction demonstrated that magnesium ammonium phosphate (MAP) crystals were successfully formed on the surface of zeolite. The SRNR-SDS process had an ideal performance for pollutant removal and MAP recovery under the optimal hydraulic retention time of 20 h. The effluent concentrations of COD, NH4+-N, TN and TP in SRNR-SDS process were approximately 34.73 mg/L, 4.31 mg/L, 10.07 mg/L and 0.23 mg/L, respectively, which meet the Chinese and international ship sewage discharge standards. SRNR-SDS process has obvious environmental, social and economic benefits, which could save 6.20%∼57.14% of the operation cost of ship domestic sewage treatment via MAP recovery. The results could provide theoretical and technical support for the development and application of ship sewage treatment process with the functions of pollutant removal and resource recovery.


Assuntos
Poluentes Ambientais , Esgotos , Estruvita , Navios , Nutrientes , Fósforo , Nitrogênio
12.
Sci Total Environ ; 875: 162706, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906010

RESUMO

The accumulation of nano metal oxide particles (NMOPs) in municipal sewage treatment systems harms the microbial community and its metabolism in activated sludge system, resulting in the degradation of its pollutants removal performance. In this work, the stress effect of NMOPs on the denitrifying phosphorus removal system was systematically investigated in terms of pollutants removal performance, key enzyme activities, microbial community diversity and abundances, and intracellular metabolites. Among the ZnO NPs, TiO2 NPs, CeO2 NPs, and CuO NPs, the ZnO NPs showed the most significant impacts with the chemical oxygen demand, total phosphorus, and nitrate nitrogen removal ratio decreased from above 90 % to 66.50 %, 49.13 %, and 57.11 %, respectively. The addition of surfactants and chelating agents could relieve the toxic effect of NMOPs on the denitrifying phosphorus removal system, and the chelating agents were more effective than surfactants in performance recovery. After adding ethylene diamine tetra acetic acid, the removal ratio of chemical oxygen demand, total phosphorus, and nitrate nitrogen under ZnO NPs stress was restored to 87.31 %, 88.79 %, and 90.35 %, respectively. The study provides valuable knowledge to better understand the impacts and stress mechanism of NMOPs on activated sludge systems and provides a solution to recover the nutrients removal performance of denitrifying phosphorus removal system under NMOPs stress.


Assuntos
Esgotos , Óxido de Zinco , Eliminação de Resíduos Líquidos/métodos , Nitratos , Fósforo/metabolismo , Reatores Biológicos , Nitrogênio/análise , Desnitrificação
13.
Chemosphere ; 302: 134829, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35523290

RESUMO

Persistent heavy metal (HM) contaminated soil provides special habitat for microorganisms, HM stress and complex abiotic factors bring great uncertainty for the development of bacteria and eukaryotic microbes. Despite numerous studies about HMs' effect on soil microorganisms, the key factors affecting microbial communities in severe HM contaminated soil and their interactions are still not definite. In this study, the effect of HM fractions and soil properties on the interaction between bacterial communities and eukaryotic microorganisms was studied by high-throughput Illumina sequencing and simplified continuous extraction of HM in severe HM contaminated soil. Based on amplification and sequencing of the 18S rRNA gene, this study revealed that protists and algae were the most predominant eukaryotic microorganisms, and the dominant phyla were SAR, Opisthokonta and Archaeplastida in HM seriously polluted soil. These results also showed that exchangeable As was negatively correlated with bacterial Shannon and Simpson indexes, while exchangeable Zn was positively correlated with Shannon and Simpson indexes of eukaryotic microbes. Moreover, the structural equation model illustrated that pH, moisture content, available potassium and phosphorus, and exchangeable Cd, As and Zn were the dominant factors shaping bacterial communities, while total organic carbon and exchangeable Zn made the predominant contributions to variations in eukaryotic microbes. In addition, eukaryotic microbes were intensely affected by the bacterial communities, with a standardized regression weight of 0.53, which exceeded the influence of other abiotic factors. It was suggested that community-level adaptions through cooperative interactions under serious HM stress in soil.


Assuntos
Metais Pesados , Microbiota , Poluentes do Solo , Bactérias/genética , Carvão Mineral , Eucariotos , Metais Pesados/análise , Centrais Elétricas , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
14.
Environ Sci Pollut Res Int ; 29(36): 54606-54618, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305217

RESUMO

Microbial fuel cells (MFCs) can obtain electrical energy from extensive organic matter and complete wastewater treatment at the same time. The principal purpose of the research is to find a solution to the biodegradation of X-3B in a double tube MFC with graphite fiber brush as the anode and carbon cloth as the cathode. The anaerobic, aerobic, and electrochemical processes in the MFC were investigated. The effects of dye concentration and circuit connectivity on the performances of MFCs were explored. The degradation efficiency of X-3B in the anode region (85.56%) was higher than that in the cathode region (14.16%) within 24 h under the optimal voltage of 0.43 V, indicating a synergistic effect between electrode reaction and biodegradation. The power density increased from 12.12 mW/m3 to 60.45 mW/m3 with the addition of X-3B from 50 to 200 mg/L, because of the reduced ohmic and polarization resistance. Intermediate productions such as aniline were manufactured with the conjugated double bond of X-3B broken, and the intermediates were degraded into small molecular products like phenol during further degradation processes. Moreover, dye concentration and circuit connection had significant effects on the relative abundance of the microbial community at phylum and genus levels. In general, MFC is a good approach to energy generation and azo dye treatment at the same time.


Assuntos
Fontes de Energia Bioelétrica , Compostos Azo/química , Eletricidade , Eletrodos , Esgotos , Águas Residuárias/química
15.
Sci Total Environ ; 835: 155409, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35469879

RESUMO

Eutrophication has attracted extensive attention owing to its harmful effects to the organisms and aquatic environment. Studies on the functional microorganisms with the ability of simultaneously nitrogen (N) and phosphorus (P) removal is of great significance for alleviating eutrophication. Thus far, several strains from various genera have been reported to accomplish simultaneous N and P removal, which is primarily observed in Bacillus, Pseudomonas, Paracoccus, and Arthrobacter. The mechanism of N and P removal by denitrifying P accumulating organisms (DPAOs) is different from the traditional biological N and P removal. The denitrifying P removal (DPR) technology based on the metabolic function of DPAOs can overcome the problem of carbon source competition and sludge age contradiction in traditional biological N and P removal processes and can be applied to the treatment of urban sewage with low C/N ratio. This paper reviews the mechanism of N and P removal by DPAOs from the aspect of the metabolic pathways and enzymatic processes. The research progress on DPR processes is also summarized and elucidated. Further research should focus on the efficient removal of N and P by improving the performance of functional microorganisms and development of new coupling processes. This review can serve as a basis for screening DPAOs with high N and P removal efficiency and developing new DPR processes in the future.


Assuntos
Fósforo , Esgotos , Reatores Biológicos , Desnitrificação , Nitrogênio/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos
16.
Sci Total Environ ; 813: 152411, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942263

RESUMO

Integrated microbial electrolysis cell-anaerobic digestion (MEC-AD) systems have demonstrated potential advantages for methane production in the presence of small amounts of residual inhibitors. In this study, a series of tests were conducted to analyse the acidification and methanogenesis performance of pretreated rice straw (RS) in anaerobic digestion (AD) and MEC-AD systems after the addition of Fenton-like reagents. The results indicated that the short-chain acids (SCFAs) accumulations reached 2284.64 ± 21.57 mg COD/L with a dosage ratio of 1/4 (g RS/g VSS sludge) in the MEC-AD system and that methane production increased by 63.8% compared with that of an individual AD system. In the interim, the net energy output reached 1.09 × 103 J/g TCOD, which was 1.23 times higher than that of the AD system. The residual Fe3+/Fe2+ in the pretreatment reagent was capable of promoting acidification and methanogenesis in sludge and RS fermentation. The RS hydrolysis products could constrain methanogenesis, which can be mitigated by introducing an MEC. The microbiological analyses revealed that the MEC strongly increased the enrichment of hydrogenotrophic methanogens, especially Methanobacterium (61.16%). Meanwhile, the Syntrophomonas and Acetobacterium abundances increased to 2.81% and 2.65%, respectively, which suggested the reinforcement of acetogenesis and methanogenesis. Therefore, the enhanced hydrogenotrophic methanogens might have served as the key for enhancing the efficiency of methanogenesis due to the introduction of an MEC.


Assuntos
Oryza , Esgotos , Anaerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
17.
Sci Total Environ ; 847: 157619, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901877

RESUMO

As an emerging pollutant, benzalkonium chlorides (BACs) potentially enriched in waste activated sludge (WAS). However, the microbial response mechanism under chronic effects of BACs on acidogenesis and methanogenesis in anaerobic digestion (AD) has not been clearly disclosed. This study investigated the AD (by-)products and microbial evolution under low to high BACs concentrations from bioreactor startup to steady running. It was found that BACs can lead to an increase of WAS hydrolysis and fermentation, but a disturbance to acidogenic bacteria also occurred at low BACs concentration. A noticeable inhibition to methanogenesis occurred when BAC concentration was up to 15 mg/g TSS. Metagenomic analysis revealed the key genes involved in acetic acid (HAc) biosynthesis (i.e. phosphate acetyltransferase, PTA), ß-oxidation pathway (acetyl-CoA C-acetyltransferase) and propionic acid (HPr) conversion was slightly promoted compared with control. Furthermore, BACs inhibited the acetotrophic methanogenesis (i.e. acetyl-CoA synthetase), especially BAC concentration was up to 15 mg/g TSS, thereby enhanced short chain fatty acids (SCFAs) accumulation. Overall, chronic stimulation of functional microorganisms with increasing concentrations of BACs impact WAS fermentation.


Assuntos
Poluentes Ambientais , Esgotos , Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Anaerobiose , Compostos de Benzalcônio , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ligases/metabolismo , Metano , Fosfato Acetiltransferase/metabolismo , Propionatos , Esgotos/microbiologia
18.
Bioresour Technol ; 313: 123657, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32574747

RESUMO

Towards the regulation and enhancement of inter-species electron transfer in sludge anaerobic digestion system, microbial electrolysis technology has become one of the effective ways to accelerate both fermentation and methanogenesis. In this study, the reactor performances and microbial activities related to biocathode formation are evaluated when the role of biocathode is regulated by series of layered cathodes. The results show the abundance of the cathodic methanogens decreased when enlarges the cathode area due to the lower current density. The biocathode evolution is directly related to the spatial methane distribution, which can further determine 25% increase of methane production rate compared to control without biocathode. Ultimately, the maximum methane production yield of 145.79 mL·d-1 is achieved by the optimal cathode area with a current density of 5.3 mA/cm3. The spatially methanogens distribution in suspended sludge and electrodes regulated by the layered cathodes is regarded to be the key to increase methanogenesis.


Assuntos
Reatores Biológicos , Níquel , Anaerobiose , Eletrodos , Metano , Esgotos
19.
Bioresour Technol ; 289: 121642, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31226670

RESUMO

This study reported an efficient approach, i.e., alkaline followed by potassium ferrate (PF) pretreatment, to enhance short chain fatty acids (SCFAs) production from waste activated sludge anaerobic fermentation process. The optimum condition was initial pH of 10.0 and PF dosage of 28 mg Fe(VI)/g total suspended solid, with the highest SCFAs production of 382 mg chemical oxygen demand/g volatile suspended solid, which was 2.03 and 2.06 times higher than that of corresponding sole treatments. It was found that the alkaline + PF treatment could provide more soluble substrates for subsequent acidification process by accelerating disruption of both microbial cells and extracellular polymeric substances. And the alkaline + PF treatment also benefited to the activity promotion of specific hydrolases and inhibition of methanogens. Besides, the abundances of microorganisms related to SCFAs production, such as Proteiniclasticum and Macellibacteroides, were increased greatly, whereas the main SCFAs consumer, Proteobacteria, was decreased from 29.1% to 14.4%.


Assuntos
Compostos de Ferro , Esgotos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Compostos de Potássio
20.
Bioresour Technol ; 247: 174-181, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28950124

RESUMO

A potentially practical technology based on ferrate (VI), i.e. potassium ferrate (PF), pretreatment integrated into waste activated sludge (WAS) anaerobic fermentation has been presented to greatly enhance short-chain fatty acids (SCFAs) production with a shortened fermentation time. The maximum production of SCFAs, 343mg chemical oxygen demand/g volatile suspended solid with acetic acid proportion of 48.2%, was obtained with PF dosage of 56mg Fe(VI)/g total suspended solid within 5days, which was increased to 5.72times compared to that of control. The mechanism study showed that PF accelerated the release rate of both intracellular and extracellular constituents. And the activities of key hydrolytic enzymes were much improved with PF addition. Moreover, PF positively enriched the abundance of microorganisms responsible for WAS hydrolysis and SCFAs production, especially acetic acid-forming characteristic genera such as Petrimonas, Fusibacter and Acetoanaerobium. Besides, the incubation time of acidogenesis and methanogenesis were separated by PF.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Compostos de Ferro , Compostos de Potássio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa