Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Plant J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924321

RESUMO

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.

2.
Plant Cell Environ ; 47(7): 2578-2596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533652

RESUMO

Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras , Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ácido Salicílico , Sacarose , Xanthomonas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Sacarose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/imunologia
3.
J Exp Bot ; 75(2): 563-577, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843034

RESUMO

A key feature in the establishment of symbiosis between plants and microbes is the maintenance of the balance between the production of the small redox-related molecule, nitric oxide (NO), and its cognate scavenging pathways. During the establishment of symbiosis, a transition from a normoxic to a microoxic environment often takes place, triggering the production of NO from nitrite via a reductive production pathway. Plant hemoglobins [phytoglobins (Phytogbs)] are a central tenant of NO scavenging, with NO homeostasis maintained via the Phytogb-NO cycle. While the first plant hemoglobin (leghemoglobin), associated with the symbiotic relationship between leguminous plants and bacterial Rhizobium species, was discovered in 1939, most other plant hemoglobins, identified only in the 1990s, were considered as non-symbiotic. From recent studies, it is becoming evident that the role of Phytogbs1 in the establishment and maintenance of plant-bacterial and plant-fungal symbiosis is also essential in roots. Consequently, the division of plant hemoglobins into symbiotic and non-symbiotic groups becomes less justified. While the main function of Phytogbs1 is related to the regulation of NO levels, participation of these proteins in the establishment of symbiotic relationships between plants and microorganisms represents another important dimension among the other processes in which these key redox-regulatory proteins play a central role.


Assuntos
Óxido Nítrico , Simbiose , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Hemoglobinas/metabolismo
4.
J Exp Bot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557811

RESUMO

Hypoxia occurs when the oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally-induced hypoxia poses significant challenges for metabolically-active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide and reactive nitrogen species (RNS), such as nitric oxide (•NO), nitrogen dioxide (•NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots and hyponastic response. NO and hydrogen peroxide (H2O2) participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the GABA shunt and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge, highlighting the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.

5.
Plant Cell Environ ; 46(8): 2492-2506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303286

RESUMO

The site of nitric oxide (NO) production in mitochondrial cytochrome c oxidase and the role of NO in mitochondrial biogenesis are not known in plants. By imposing osmotic stress and recovery on Arabidopsis seedlings we investigated the site of NO production and its role in mitochondrial biogenesis. Osmotic stress reduced growth and mitochondrial number while increasing NO production. During the recovery phase the mitochondrial number increased and this increase was higher in wild type and the high NO-producing Pgb1 silencing line in comparison to the NO-deficient nitrate reductase double mutant (nia1/nia2). Application of nitrite stimulated NO production and mitochondrial number in the nia1/nia2 mutant. Osmotic stress induced COX6b- 3 and COA6-L genes encoding subunits of COX. The mutants cox6b-3 and coa6-l were impaired both in NO production and mitochondrial number during stress to recovery suggesting the involvement of these subunits in nitrite-dependent NO production. Transcripts encoding the mitochondrial protein import machinery showed reduced expression in cox6b-3 and coa6-l mutants. Finally, COX6b-3 and COA6-L interacted with the VQ27 motif-containing protein in the presence of NO. The vq27 mutant was impaired in mitochondrial biogenesis. Our results suggest the involvement of COX derived NO in mitochondrial biogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Biogênese de Organelas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
6.
Photochem Photobiol Sci ; 22(11): 2635-2650, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751074

RESUMO

Chlamydomonas (C.) reinhardtii metabolomic changes in cyclic electron flow-dependent mutants are still unknown. Here, we used mass spectrometric analysis to monitor the changes in metabolite levels in wild-type, cyclic electron-deficient mutants pgrl1 and pgr5 grown under high-light stress. A total of 55 metabolites were detected using GC-MS analysis. High-light stress-induced selective anaplerotic amino acids in pgr5. In addition, pgr5 showed enhancement in carbohydrate, polyamine, and polyol metabolism by 2.5-fold under high light. In response to high light, pgr5 triggers an increase in several metabolites involved in regulating osmotic pressure. Among these metabolites are glycerol pathway compounds such as glycerol-3-phosphate and glyceryl-glycoside, which increase significantly by 1.55 and 3.07 times, respectively. In addition, pgr5 also enhanced proline and putrescine levels by 2.6- and 1.36-fold under high light. On the other hand, pgrl1-induced metabolites, such as alanine and serine, are crucial for photorespiration when subjected to high-light stress. We also observed a significant increase in levels of polyols and glycerol by 1.37- and 2.97-fold in pgrl1 under high-light stress. Both correlation network studies and KEGG pathway enrichment analysis revealed that metabolites related to several biological pathways, such as amino acid, carbohydrate, TCA cycle, and fatty acid metabolism, were positively correlated in pgrl1 and pgr5 under high-light stress conditions. The relative mRNA expression levels of genes related to the TCA cycle, including PDC3, ACH1, OGD2, OGD3, IDH3, and MDH4, were significantly upregulated in pgrl1 and pgr5 under HL. In pgr5, the MDH1 level was significantly increased, while ACS1, ACS3, IDH2, and IDH3 levels were reduced considerably in pgrl1 under high-light stress. The current study demonstrates both pgr5 and prgl1 showed a differential defense response to high-light stress at the primary metabolites and mRNA expression level, which can be added to the existing knowledge to explore molecular regulatory responses of prg5 and pgrl1 to high-light stress.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Glicerol/metabolismo , Fotossíntese , RNA Mensageiro/metabolismo , Luz
7.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982973

RESUMO

Lactate/malate dehydrogenases (Ldh/Maldh) are ubiquitous enzymes involved in the central metabolic pathway of plants and animals. The role of malate dehydrogenases in the plant system is very well documented. However, the role of its homolog L-lactate dehydrogenases still remains elusive. Though its occurrence is experimentally proven in a few plant species, not much is known about its role in rice. Therefore, a comprehensive genome-wide in silico investigation was carried out to identify all Ldh genes in model plants, rice and Arabidopsis, which revealed Ldh to be a multigene family encoding multiple proteins. Publicly available data suggest its role in a wide range of abiotic stresses such as anoxia, salinity, heat, submergence, cold and heavy metal stress, as also confirmed by our qRT-PCR analysis, especially in salinity and heavy metal mediated stresses. A detailed protein modelling and docking analysis using Schrodinger Suite reveals the presence of three putatively functional L-lactate dehydrogenases in rice, namely OsLdh3, OsLdh7 and OsLdh9. The analysis also highlights the important role of Ser-219, Gly-220 and His-251 in the active site geometry of OsLdh3, OsLdh7 and OsLdh9, respectively. In fact, these three genes have also been found to be highly upregulated under salinity, hypoxia and heavy metal mediated stresses in rice.


Assuntos
Arabidopsis , Metais Pesados , Oryza , Animais , L-Lactato Desidrogenase/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Malatos , Lactato Desidrogenases/metabolismo , Evolução Molecular , Metais Pesados/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Filogenia
8.
Plant Cell Environ ; 45(1): 178-190, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633089

RESUMO

An important and interesting feature of rice is that it can germinate under anoxic conditions. Though several biochemical adaptive mechanisms play an important role in the anaerobic germination of rice but the role of phytoglobin-nitric oxide cycle and alternative oxidase pathway is not known, therefore in this study we investigated the role of these pathways in anaerobic germination. Under anoxic conditions, deepwater rice germinated much higher and rapidly than aerobic condition and the anaerobic germination and growth were much higher in the presence of nitrite. The addition of nitrite stimulated NR activity and NO production. Important components of phytoglobin-NO cycle such as methaemoglobin reductase activity, expression of Phytoglobin1, NIA1 were elevated under anaerobic conditions in the presence of nitrite. The operation of phytoglobin-NO cycle also enhanced anaerobic ATP generation, LDH, ADH activities and in parallel ethylene levels were also enhanced. Interestingly nitrite suppressed the ROS production and lipid peroxidation. The reduction of ROS was accompanied by enhanced expression of mitochondrial alternative oxidase protein and its capacity. Application of AOX inhibitor SHAM inhibited the anoxic growth mediated by nitrite. In addition, nitrite improved the submergence tolerance of seedlings. Our study revealed that nitrite driven phytoglobin-NO cycle and AOX are crucial players in anaerobic germination and growth of deepwater rice.


Assuntos
Germinação/fisiologia , Óxido Nítrico/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Anaerobiose , Etilenos/metabolismo , Fermentação , Globinas/metabolismo , Proteínas Mitocondriais/metabolismo , Nitrato Redutase/metabolismo , Nitritos/metabolismo , Oryza/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Trealose/metabolismo
9.
Physiol Plant ; 174(2): e13649, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149995

RESUMO

Under stress conditions, the overproduction of different reactive oxygen species (ROS) and reactive nitrogen species (RNS) causes imbalance in the redox homeostasis of the cell leading to nitro-oxidative stress in plants. Alternative oxidase (AOX) is a conserving terminal oxidase of the mitochondrial electron transport chain, which can minimize the ROS. Still, the role of AOX in the regulation of RNS during nitro-oxidative stress imposed by salinity stress is not known. Here, we investigated the role of AOX in minimizing ROS and RNS induced by 150 mM NaCl in Arabidopsis using transgenic plants overexpressing (AOX OE) and antisense lines (AOX AS) of AOX. Imposing NaCl treatment leads to a 4-fold enhanced expression of AOX accompanied by enhanced AOX capacity in WT Col-0. Further AOX-OE seedlings displayed enhanced growth compared with the AOX-AS line under stress. Examination of NO levels by DAF-FM fluorescence and chemiluminescence revealed that AOX overexpression leads to reduced levels of NO. The total NR activity was elevated under NaCl, but no significant change was observed in wild-type (WT), AOX OE, and AS lines. The total ROS, superoxide, H2 O2 levels, and lipid peroxidation were higher in the AOX-AS line than in WT and AOX-OE lines. The peroxynitrite levels were also higher in the AOX-AS line than in WT and AOX-OE lines; further, the expression of antioxidant genes was elevated in AOX-AS. Taken together, our results suggest that AOX plays an important role in the mitigation of ROS and RNS levels and enhances plant growth, thus providing tolerance against nitro-oxidative stress exerted by NaCl.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia
10.
Physiol Plant ; 174(2): e13685, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35419814

RESUMO

Rice is an important staple food crop that feeds over half of the human population, particularly in developing countries. Increasing salinity is a major challenge for continuing rice production. Though rice is affected by salinity at all the developmental stages, it is most sensitive at the early seedling stage. The yield thus depends on how many seedlings can withstand saline water at the stage of transplantation, especially in coastal farms. The rapid development of "omics" approaches has assisted researchers in identifying biological molecules that are responsive to salt stress. Several salinity-responsive quantitative trait loci (QTL) contributing to salinity tolerance have been identified and validated, making it essential to narrow down the search for the key genes within QTLs. Owing to the impressive progress of molecular tools, it is now clear that the response of plants toward salinity is highly complex, involving multiple genes, with a specific role assigned to the repertoire of transcription factors (TF). Targeting the TFs for improving salinity tolerance can have an inbuilt advantage of influencing multiple downstream genes, which in turn can contribute toward tolerance to multiple stresses. This is the first comparative study for TF-driven salinity tolerance in contrasting rice cultivars at the seedling stage that shows how tolerant genotypes behave differently than sensitive ones in terms of stress tolerance. Understanding the complexity of salt-responsive TF networks at the seedling stage will be helpful to alleviate crop resilience and prevent crop damage at an early growth stage in rice.


Assuntos
Oryza , Plântula , Oryza/fisiologia , Locos de Características Quantitativas/genética , Salinidade , Tolerância ao Sal/genética , Plântula/fisiologia , Fatores de Transcrição/genética
11.
J Exp Bot ; 72(3): 793-807, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33245770

RESUMO

Plant mitochondrial respiration involves the operation of various alternative pathways. These pathways participate, both directly and indirectly, in the maintenance of mitochondrial functions though they do not contribute to energy production, being uncoupled from the generation of an electrochemical gradient across the mitochondrial membrane and thus from ATP production. Recent findings suggest that uncoupled respiration is involved in reactive oxygen species (ROS) and nitric oxide (NO) scavenging, regulation, and homeostasis. Here we discuss specific roles and possible functions of uncoupled mitochondrial respiration in ROS and NO metabolism. The mechanisms of expression and regulation of the NDA-, NDB- and NDC-type non-coupled NADH and NADPH dehydrogenases, the alternative oxidase (AOX), and the uncoupling protein (UCP) are examined in relation to their involvement in the establishment of the stable far-from-equilibrium state of plant metabolism. The role of uncoupled respiration in controlling the levels of ROS and NO as well as inducing signaling events is considered. Secondary functions of uncoupled respiration include its role in protection from stress factors and roles in biosynthesis and catabolism. It is concluded that uncoupled mitochondrial respiration plays an important role in providing rapid adaptation of plants to changing environmental factors via regulation of ROS and NO.


Assuntos
Mitocôndrias , Nitrogênio , Oxigênio , Proteínas Mitocondriais , Óxido Nítrico , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio
13.
New Phytol ; 225(3): 1143-1151, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31144317

RESUMO

Plant tissues, particularly roots, can be subjected to periods of hypoxia due to environmental circumstances. Plants have developed various adaptations in response to hypoxic stress and these have been described extensively. Less well-appreciated is the body of evidence demonstrating that scavenging of nitric oxide (NO) and the reduction of nitrate/nitrite regulate important mechanisms that contribute to tolerance to hypoxia. Although ethylene controls hyponasty and aerenchyma formation, NO production apparently regulates hypoxic ethylene biosynthesis. In the hypoxic mitochondrion, cytochrome c oxidase, which is a major source of NO, also is inhibited by NO, thereby reducing the respiratory rate and enhancing local oxygen concentrations. Nitrite can maintain ATP generation under hypoxia by coupling its reduction to the translocation of protons from the inner side of mitochondria and generating an electrochemical gradient. This reaction can be further coupled to a reaction whereby nonsymbiotic haemoglobin oxidizes NO to nitrate. In addition to these functions, nitrite has been reported to influence mitochondrial structure and supercomplex formation, as well as playing a role in oxygen sensing via the N-end rule pathway. These studies establish that nitrite and NO perform multiple functions during plant hypoxia and suggest that further research into the underlying mechanisms is warranted.


Assuntos
Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxigênio/farmacologia , Plantas/metabolismo , Etilenos/farmacologia , Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
14.
New Phytol ; 225(5): 1828-1834, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479520

RESUMO

Nitric oxide (NO) emerged as a key signal molecule in plants. During the last two decades impressive progress has been made in plant NO research. This small, redox-active molecule is now known to play an important role in plant immunity, stress responses, environmental interactions, plant growth and development. To more accurately and robustly establish the full spectrum of NO bioactivity in plants, it will be essential to apply methodological best practice. In addition, there are some instances of conflicting nomenclature within the field, which would benefit from standardization. In this context, we attempt to provide some helpful guidance for best practice associated with NO research and also suggestions for the cognate terminology.


Assuntos
Óxido Nítrico , Plantas , Desenvolvimento Vegetal
15.
New Phytol ; 227(5): 1319-1325, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32339293

RESUMO

Nitric oxide (NO) is perfectly suited for the role of a redox signalling molecule. A key route for NO bioactivity occurs via protein S-nitrosation, and involves the addition of a NO moiety to a protein cysteine (Cys) thiol (-SH) to form an S-nitrosothiol (SNO). This process is thought to underpin a myriad of cellular processes in plants that are linked to development, environmental responses and immune function. Here we collate emerging evidence showing that NO bioactivity regulates a growing number of diverse post-translational modifications including SUMOylation, phosphorylation, persulfidation and acetylation. We provide examples of how NO orchestrates these processes to mediate plant adaptation to a variety of cellular cues.


Assuntos
Óxido Nítrico , S-Nitrosotióis , Óxido Nítrico/metabolismo , Nitrosação , Oxirredução , Plantas/metabolismo , Processamento de Proteína Pós-Traducional
16.
J Exp Bot ; 71(2): 465-469, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31559421

RESUMO

Elevated greenhouse gases (GHGs) induce adverse conditions directly and indirectly, causing decreases in plant productivity. To deal with climate change effects, plants have developed various mechanisms including the fine-tuning of metabolism. Plant respiratory metabolism is highly flexible due to the presence of various alternative pathways. The mitochondrial alternative oxidase (AOX) respiratory pathway is responsive to these changes, and several lines of evidence suggest it plays a role in reducing excesses of reactive oxygen species (ROS) and reactive nitrogen species (RNS) while providing metabolic flexibility under stress. Here we discuss the importance of the AOX pathway in dealing with elevated carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), and the main abiotic stresses induced by climate change.


Assuntos
Dióxido de Carbono/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxirredutases/metabolismo , Ozônio/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Mudança Climática , Estresse Fisiológico
17.
J Exp Bot ; 70(17): 4345-4354, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30968134

RESUMO

Plant mitochondria possess two different pathways for electron transport from ubiquinol: the cytochrome pathway and the alternative oxidase (AOX) pathway. The AOX pathway plays an important role in stress tolerance and is induced by various metabolites and signals. Previously, several lines of evidence indicated that the AOX pathway prevents overproduction of superoxide and other reactive oxygen species. More recent evidence suggests that AOX also plays a role in regulation of nitric oxide (NO) production and signalling. The AOX pathway is induced under low phosphate, hypoxia, pathogen infections, and elicitor treatments. The induction of AOX under aerobic conditions in response to various stresses can reduce electron transfer through complexes III and IV and thus prevents the leakage of electrons to nitrite and the subsequent accumulation of NO. Excess NO under various stresses can inhibit complex IV; thus, the AOX pathway minimizes nitrite-dependent NO synthesis that would arise from enhanced electron leakage in the cytochrome pathway. By preventing NO generation, AOX can reduce peroxynitrite formation and tyrosine nitration. In contrast to its function under normoxia, AOX has a specific role under hypoxia, where AOX can facilitate nitrite-dependent NO production. This reaction drives the phytoglobin-NO cycle to increase energy efficiency under hypoxia.


Assuntos
Proteínas Mitocondriais/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Anaerobiose , Oxigênio/análise , Plantas/enzimologia
18.
J Exp Bot ; 70(18): 4877-4886, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31089684

RESUMO

Nitric oxide (NO) is emerging as a key signalling molecule in plants. The chief mechanism for the transfer of NO bioactivity is thought to be S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). The enzyme S-nitrosoglutathione reductase (GSNOR) indirectly controls the total levels of cellular S-nitrosylation, by depleting S-nitrosoglutathione (GSNO), the major cellular NO donor. Here we show that depletion of GSNOR function impacts tomato (Solanum lycopersicum. L) fruit development. Thus, reduction of GSNOR expression through RNAi modulated both fruit formation and yield, establishing a novel function for GSNOR. Further, depletion of S. lycopersicum GSNOR (SlGSNOR) additionally impacted a number of other developmental processes, including seed development, which also has not been previously linked with GSNOR activity. In contrast to Arabidopsis, depletion of GSNOR function did not influence root development. Further, reduction of GSNOR transcript abundance compromised plant immunity. Surprisingly, this was in contrast to previous data in Arabidopsis that reported that reducing Arabidopsis thaliana GSNOR (AtGSNOR) expression by antisense technology increased disease resistance. We also show that increased SlGSNOR expression enhanced pathogen protection, uncovering a potential strategy to enhance disease resistance in crop plants. Collectively, our findings reveal, at the genetic level, that some but not all GSNOR activities are conserved outside the Arabidopsis reference system. Thus, manipulating the extent of GSNOR expression may control important agricultural traits in tomato and possibly other crop plants.


Assuntos
Aldeído Oxirredutases/genética , Frutas/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Doenças das Plantas/genética , Solanum lycopersicum/genética , Aldeído Oxirredutases/metabolismo , Resistência à Doença/genética , Resistência à Doença/imunologia , Frutas/enzimologia , Frutas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética
19.
J Exp Bot ; 70(17): 4333-4343, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31106826

RESUMO

Nitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.


Assuntos
Botânica/métodos , Óxido Nítrico/análise , Plantas/química , Transdução de Sinais , Óxido Nítrico/metabolismo , Plantas/metabolismo
20.
J Exp Bot ; 70(17): 4539-4555, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31162578

RESUMO

Seed germination is crucial for the plant life cycle. We investigated the role of nitric oxide (NO) in two chickpea varieties that differ in germination capacity: Kabuli, which has a low rate of germination and germinates slowly, and Desi, which shows improved germination properties. Desi produced more NO than Kabuli and had lower respiratory rates. As a result of the high respiration rates, Kabuli had higher levels of reactive oxygen species (ROS). Treatment with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) reduced respiration in Kabuli and decreased ROS levels, resulting in accelerated germination rates. These findings suggest that NO plays a key role in the germination of Kabuli. SNAP increased the levels of transcripts encoding enzymes involved in carbohydrate metabolism and the cell cycle. Moreover, the levels of amino acids and organic acids were increased in Kabuli as a result of SNAP treatment. 1H-nuclear magnetic resonance analysis revealed that Kabuli has a higher capacity for glucose oxidation than Desi. An observed SNAP-induced increase in 13C incorporation into soluble alanine may result from enhanced oxidation of exogenous [13C]glucose via glycolysis and the pentose phosphate pathway. A homozygous hybrid that originated from a recombinant inbred line population of a cross between Desi and Kabuli germinated faster and had increased NO levels and a reduced accumulation of ROS compared with Kabuli. Taken together, these findings demonstrate the importance of NO in chickpea germination via the control of respiration and ROS accumulation.


Assuntos
Cicer/fisiologia , Germinação , Óxido Nítrico/metabolismo , Respiração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa