Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 27(11): 2651-2664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34924716

RESUMO

Contamination of agricultural soil by chromium (Cr) is a serious menace to environmental safety and global food security. Although potential of salicylic acid (SA) in mitigating heavy metal (HM) toxicity in plants is well recognized, detailed physiological mechanisms behind such beneficial effects under Cr-stress in tomato (Solanum lycopersicum L.) plant are far from being completely unravelled. The present study evaluated the efficacy of exogenously applied SA, in alleviating Cr-mediated alterations on photosynthesis and antioxidant defense in tomato exposed to three different concentrations of Cr(VI) [0, 50, and 100 mg Cr(VI) kg-1 soil]. Exposure of tomato plants to Cr resulted in increased Cr-accumulation and oxidative damage, as signposted by high Cr concentration in root as well as shoot, augmented malondialdehyde (MDA) and superoxides levels, and inhibition in enzymes of ascorbate-glutathione (AsA-GSH) cycle. Furthermore, a significant (P ≤ 0.05) reduction in photosynthetic pigments and gas exchange parameters was also evident in Cr-stressed tomato plants. Findings of the present study showed that exogenous application of 0.5 mM SA not only promoted plant growth subjected to Cr, but also restored Cr-mediated disturbances in plant physiology. A significant (P ≤ 0.05) decrease in Cr acquisition and translocation as evidenced by improved growth and photosynthesis in SA-treated plants was observed. Additionally, exogenous SA application by virtue of its positive effect on efficient antioxidant system ameliorated the Cr-mediated oxidative stress in tomato plants as signposted by lower MDA and superoxide levels and improved AsA-GSH cycle. Overall, current study advocates the potential of exogenous SA application in amelioration of Cr-mediated physiological disturbances in tomato plant.

2.
J Fungi (Basel) ; 9(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367547

RESUMO

The use of biofertilizers has been the spotlight of research aiming to mitigate the food security threat as well as to restore the fertility of agricultural lands, for decades. Several studies are being conducted to unravel the role and mechanisms of plant growth-promoting microbes. In the present research, we evaluated the effect of silver nanoparticles (AgNPs) and Piriformospora indica on the growth and nutritional enhancement of black rice (Oryzae sativa. L.) individually and in combination. Among the different treatment conditions, the AgNPs + P. indica treatment led to a significant (p ≤ 0.05) increase in morphological and agronomic parameters. In comparison to the control, the percentage increase in plant height in AgNPs-treated black rice was 2.47%, while that for the treatment with only P. indica was 13.2% and that for the treatment with both AgNPs + P. indica was 30.9%. For the number of productive tillers, the effect of AgNPs in comparison to the control was non-significant; however, the effect of P. indica and AgNPs + P. indica showed a significant (p ≤ 0.05) increase of 13.2% and 30.9% in both the treatments, respectively. Gas chromatography mass spectrophotometry analysis of grains revealed that the contents of phenylalanine, tryptophan, and histidine (aromatic amino acids) were significantly (p ≤ 0.05) increased by 75%, 11.1%, and 50%, respectively, in P. indica-treated black rice. Nutrient profiling showed that macronutrients such as potassium, calcium, magnesium were found to be increased by 72.8%, 86.4% and 59.2%, respectively, in the treatment with AgNPs + P. indica in comparison to the control plants. Additionally, a significant (p ≤ 0.05) increase of 51.9% in anthocyanin content was observed in AgNPs + P. indica-treated black rice. The P. indica treatment also showed improved growth and augmented nutrient contents. From this study, we were able to understand that AgNPs + P. indica treatment would be a better plant growth-promoting factor and further evaluation would enable us to obtain a clear picture of its mechanisms of action.

3.
Plant Physiol Biochem ; 197: 107631, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36965318

RESUMO

Utilization of arbuscular mycorrhizal (AM) fungi (AMF) as a sustainable strategy in redeeming arsenic (As) toxicity in plants is a promising approach. Low As accumulation, restoration of physiological processes, and As tolerance by AMF have been documented in crop plants. However, to comprehend AM-mediated As tolerance in plants, understanding the biochemical responses of host to the symbiont is crucial. The study evaluated the effect of an AM fungus, Rhizophagus intraradices on tricarboxylic acid cycle (TCA) and nitrogen metabolism of Triticum aestivum under three As concentrations (0, 25, and 50 mg As kg-1 soil). Results showed that TCA cycle and nitrogen metabolism were severely impaired by As that resulted into a higher C/N ratio. However, colonization by R. intraradices attenuated As mediated alterations in TCA cycle by augmenting the activity of pyruvate dehydrogenase that provided sufficient substrate for the TCA cycle. Furthermore, mycorrhizal (M) plants reinstated the activities of isocitrate dehydrogenase, succinate dehydrogenase, fumarase, and malate dehydrogenase even under high As level. Although citrate synthase and oxoglutarate dehydrogenase activities declined upon As exposure in M-plants, these were nevertheless higher than their non-mycorrhizal (NM) counterparts, ensuring higher levels of citric acid and succinic acid in M-plants. AM colonization also moderated the As-mediated disturbances in nitrogen assimilation by augmenting the activity of nitrate reductase, nitrite reductase, glutamine synthase, and glutamine-2-oxoglutarate amino transferase. Overall findings of the study point out that colonization by R. intraradices favourably regulated the TCA cycle and nitrogen metabolism and confronted As-mediated alterations in C/N ratio.


Assuntos
Arsênio , Micorrizas , Micorrizas/fisiologia , Ciclo do Ácido Cítrico , Triticum/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Glutamina , Isocitrato Desidrogenase/metabolismo , Nitrogênio/metabolismo
4.
Plant Physiol Biochem ; 203: 108039, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717347

RESUMO

Arbuscular mycorrhiza (AM) has been reported to influence secondary metabolism of Ocimum tenuiflorum L., thereby improving its therapeutic and commercial importance. To explain changes in the secondary metabolite profile, the study reports effects of AM on leaf metabolome of two high yielding genotypes of O. tenuiflorum inoculated with Rhizophagus intraradices. NMR-based non-targeted metabolic fingerprinting was related to changes at physiological, biochemical, and molecular levels in mycorrhizal (M) plants. AM resulted in higher accumulation of sucrose, which could be related with enhanced photosynthesis by virtue of increased uptake of mineral nutrients. A strong positive correlation between sucrose and net photosynthetic rate and sucrose and mineral nutrients supported that AM-mediated increase in uptake of mineral nutrients is associated with enhanced photosynthetic rate and accumulation of sucrose. Further, higher sucrose synthase activity resulted in increased glucose. Hexokinase activity was also higher in M plants resulting in higher pyruvate accumulation. On the contrary, Krebs cycle was compromised in M plants as evident by lower activities of its enzymes and concentrations of organic and amino acids. Nevertheless, AM increased activities and expressions of enzymes of terpenoid biosynthesis, shikimate, and phenylpropanoid pathways, thereby resulting in augmented production of terpenoids, phenylalanine, and phenols, respectively. Thus, metabolic reprogramming downstream of glycolysis was apparent wherein AMF resulted in more allocation of carbon resources to secondary metabolism as opposed to primary metabolism, which was supported by Pearson's correlation analysis. Higher C:N ratio in M plants explains the provision of more carbon resources to secondary metabolism as against primary metabolism.

5.
J Fungi (Basel) ; 9(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836374

RESUMO

In the current research, unique Nano-Embedded Fungus (NEF), made by the synergic association of silver nanoparticles (AgNPs) and endophytic fungus (Piriformospora indica), is studied, and the impact of NEF on black rice secondary metabolites is reported. AgNPs were synthesized by chemical reduction process using the temperature-dependent method and characterized for morphological and structural features through UV visible absorption spectroscopy, zeta potential, XRD, SEM-EDX, and FTIR spectroscopy. The NEF, prepared by optimizing the AgNPs concentration (300 ppm) in agar and broth media, showed better fungal biomass, colony diameter, spore count, and spore size than the control P. indica. Treatment with AgNPs, P. indica, and NEF resulted in growth enhancement in black rice. NEF and AgNPs stimulated the production of secondary metabolites in its leaves. The concentrations of chlorophyll, carotenoids, flavonoids, and terpenoids were increased in plants inoculated with P. indica and AgNPs. The findings of the study highlight the synergistic effect of AgNPs and the fungal symbionts in augmenting the secondary metabolites in leaves of black rice.

6.
J Fungi (Basel) ; 9(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504751

RESUMO

Kargil is a cold desert with hostile ecological conditions such as low temperature and precipitation, as well as difficult terrains. However, several wild mushrooms thrive well under such an extreme environment. Despite their abundance, the chemical composition of indigenous mushrooms has not been explored. This study aimed to assess the potential of two wild edible mushrooms from Kargil, Lactarius drassinus and Lactarius controversus, as food supplements by evaluating their nutritional and nutraceutical properties. Nutritional attributes such as total protein, available carbohydrates, soluble sugars, and vitamins were found to be high in the mushroom species. Furthermore, high mineral accumulation and relatively lower antinutrient concentrations resulted in higher bioavailabilities of Zn, Fe, Ca, and Mg. Gas-chromatography-mass-spectrometry-based metabolite profiling revealed that although the two mushroom species showed similar metabolite compositions, their relative concentrations differed. Sugars were the predominant compounds identified in both the species, with sugar alcohols being the major contributor. The second most abundant class of compound in L. drassinus was amino acids, with 5-oxoproline as the major contributor. On the other hand, fatty acids were the second most abundant compounds in L. controversus, with high oleic and linoleic acid concentrations. In the ultra-performance-liquid-chromatography-based quantification of phenolic compounds, chlorogenic acid was found to be highest in in terms of its concentration in both the mushrooms studied, followed by quercetin dihydrate and gallic acid in L. drassinus and L. controversus, respectively. Moreover, high antioxidant activities attributable to their high phenol, flavonoid, and carotenoid concentrations were observed. Overall, the two mushrooms offer well-balanced sources of nutritional and nutraceutical compounds, making them healthy foods.

7.
Front Plant Sci ; 12: 640379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777073

RESUMO

Contamination of agricultural soil by arsenic (As) is a serious menace to environmental safety and global food security. Symbiotic plant-microbe interaction, such as arbuscular mycorrhiza (AM), is a promising approach to minimize hazards of As contamination in agricultural soil. Even though the potential of AM fungi (AMF) in redeeming As tolerance and improving growth is well recognized, the detailed metabolic and physiological mechanisms behind such beneficial effects are far from being completely unraveled. The present study investigated the ability of an AM fungus, Rhizophagus intraradices, in mitigating As-mediated negative effects on photosynthesis and sugar metabolism in wheat (Triticum aestivum) subjected to three levels of As, viz., 0, 25, and 50 mg As kg-1 of soil, supplied as sodium arsenate. As exposure caused significant decrease in photosynthetic pigments, Hill reaction activity, and gas exchange parameters such as net photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration. In addition, As exposure also altered the activities of starch-hydrolyzing, sucrose-synthesizing, and sucrose-degrading enzymes in leaves. Colonization by R. intraradices not only promoted plant growth but also restored As-mediated impairments in plant physiology. The symbiosis augmented the concentration of photosynthetic pigments, enhanced Hill reaction activity, and improved leaf gas exchange parameters and water use efficiency of T. aestivum even at high dose of 50 mg As kg-1 of soil. Furthermore, inoculation with R. intraradices also restored As-mediated alteration in sugar metabolism by modulating the activities of starch phosphorylase, α-amylase, ß-amylase, acid invertase, sucrose synthase, and sucrose-phosphate synthase in leaves. This ensured improved sugar and starch levels in mycorrhizal plants. Overall, the study advocates the potential of R. intraradices in bio-amelioration of As-induced physiological disturbances in wheat plant.

8.
Front Plant Sci ; 12: 642101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220878

RESUMO

Environmental stresses of (a)biotic origin induce the production of multitudinous compounds (metabolites and proteins) as protective defense mechanisms in plants. On account of the regulation of some of these compounds, arbuscular mycorrhizal fungi (AMF) reinforce the inherent tolerance of plants toward the stress of different origins and kind. This article reviews two specific fundamental mechanisms that are categorically associated with mycorrhiza in alleviating major abiotic stresses, salt, drought, and heavy metal (HM) toxicity. It puts emphasis on aquaporins (AQPs), the conduits of water and stress signals; and polyamines (PAs), the primordial stress molecules, which are regulated by AMF to assure water, nutrient, ion, and redox homeostasis. Under stressful conditions, AMF-mediated host AQP responses register distinct patterns: an upregulation to encourage water and nutrient uptake; a downregulation to restrict water loss and HM uptake; or no alterations. The patterns thereof are apparently an integrative outcome of the duration, intensity, and type of stress, AMF species, the interaction of fungal AQPs with that of plants, and the host type. However, the cellular and molecular bases of mycorrhizal influence on host AQPs are largely unexplored. The roles of PAs in augmenting the antioxidant defense system and improving the tolerance against oxidative stress are well-evident. However, the precise mechanism by which mycorrhiza accords stress tolerance by influencing the PA metabolism per se is abstruse and broadly variable under different stresses and plant species. This review comprehensively analyzes the current state-of-art of the involvement of AMF in "PA and AQP modulation" under abiotic stress and identifies the lesser-explored landscapes, gaps in understanding, and the accompanying challenges. Finally, this review outlines the prospects of AMF in realizing sustainable agriculture and provides insights into potential thrust areas of research on AMF and abiotic stress.

9.
Front Plant Sci ; 10: 470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031793

RESUMO

Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa