Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119665, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086114

RESUMO

The vast peat deposits in the Peruvian Amazon are crucial to the global climate. Palm swamp, the most extensive regional peatland ecosystem faces different threats, including deforestation and degradation due to felling of the dominant palm Mauritia flexuosa for fruit harvesting. While these activities convert this natural C sink into a source, the distribution of degradation and deforestation in this ecosystem and related C emissions remain unstudied. We used remote sensing data from Landsat, ALOS-PALSAR, and NASA's GEDI spaceborne LiDAR-derived products to map palm swamp degradation and deforestation within a 28 Mha area of the lowland Peruvian Amazon in 1990-2007 and 2007-2018. We combined this information with a regional peat map, C stock density data and peat emission factors to determine (1) peatland C stocks of peat-forming ecosystems (palm swamp, herbaceous swamp, pole forest), and (2) areas of palm swamp peatland degradation and deforestation and associated C emissions. In the 6.9 ± 0.1 Mha of predicted peat-forming ecosystems within the larger 28 Mha study area, 73% overlaid peat (5.1 ± 0.9 Mha) and stored 3.88 ± 0.12 Pg C. Degradation and deforestation in palm swamp peatlands totaled 535,423 ± 8,419 ha over 1990-2018, with a pronounced dominance for degradation (85%). The degradation rate increased 15% from 15,400 ha y-1 (1990-2007) to 17,650 ha y-1 (2007-2018) and the deforestation rate more than doubled from 1,900 ha y-1 to 4,200 ha y-1. Over 1990-2018, emissions from degradation amounted to 26.3 ± 3.5 Tg C and emissions from deforestation were 12.9 ± 0.5 Tg C. The 2007-2018 emission rate from both biomass and peat loss of 1.9 Tg C yr-1 is four times the average biomass loss rate due to gross deforestation in 2010-2019 reported for the hydromorphic Peruvian Amazon. The magnitude of emissions calls for the country to account for deforestation and degradation of peatlands in national reporting.


Assuntos
Ecossistema , Áreas Alagadas , Carbono/análise , Conservação dos Recursos Naturais , Peru , Solo , Clima Tropical
2.
Science ; 379(6630): eabp8622, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701452

RESUMO

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Assuntos
Carbono , Conservação dos Recursos Naturais , Floresta Úmida , Biodiversidade , Ciclo do Carbono , Brasil
3.
PLoS One ; 14(10): e0223821, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622396

RESUMO

Aedes albopictus is a viable vector for several infectious diseases such as Zika, West Nile, Dengue viruses and others. Originating from Asia, this invasive species is rapidly expanding into North American temperate areas and urbanized places causing major concerns for public health. Previous analyses show that warm temperatures and high humidity during the mosquito season are ideal conditions for A. albopictus development, while its distribution is correlated with population density. To better understand A. albopictus expansion into urban places it is important to consider the role of both environmental and neighborhood factors. The present study aims to assess the relative importance of both environmental variables and neighborhood factors in the prediction of A. albopictus' presence in Southeast Pennsylvania using MaxEnt (version 3.4.1) machine-learning algorithm. Three models are developed that include: (1) exclusively environmental variables, (2) exclusively neighborhood factors, and (3) a combination of environmental variables and neighborhood factors. Outcomes from the three models are compared in terms of variable importance, accuracy, and the spatial distribution of predicted A. albopictus' presence. All three models predicted the presence of A. albopictus in urban centers, however, each to a different spatial extent. The combined model resulted in the highest accuracy (74.7%) compared to the model with only environmental variables (73.5%) and to the model with only neighborhood factors (72.1%) separately. Although the combined model does not essentially increase the accuracy in the prediction, the spatial patterns of mosquito distribution are different when compared to environmental or neighborhood factors alone. Environmental variables help to explain conditions associated with mosquitoes in suburban/rural areas, while neighborhood factors summarize the local conditions that can also impact mosquito habitats in predominantly urban places. Overall, the present study shows that MaxEnt is suitable for integrating neighborhood factors associated with mosquito presence that can complement and improve species distribution modeling.


Assuntos
Aedes/fisiologia , Aprendizado de Máquina , Aedes/virologia , Animais , Área Sob a Curva , Ecossistema , Pennsylvania , Densidade Demográfica , Curva ROC , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa