Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes Dev ; 32(23-24): 1514-1524, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463906

RESUMO

Duplication of the X-linked MECP2 gene causes a severe neurological syndrome whose molecular basis is poorly understood. To determine the contribution of known functional domains to overexpression toxicity, we engineered a mouse model that expresses wild-type or mutated MeCP2 from the Mapt (Tau) locus in addition to the endogenous protein. Animals that expressed approximately four times the wild-type level of MeCP2 failed to survive to weaning. Strikingly, a single amino acid substitution that prevents MeCP2 from binding to the TBL1X(R1) subunit of nuclear receptor corepressor 1/2 (NCoR1/2) complexes, when expressed at equivalent high levels, was phenotypically indistinguishable from wild type, suggesting that excessive corepressor recruitment underlies toxicity. In contrast, mutations affecting the DNA-binding domain were toxic when overexpressed. As the NCoR1/2 corepressors are thought to act through histone deacetylation by histone deacetylase 3 (HDAC3), we asked whether mutations in NCoR1 and NCoR2 that drastically reduced their ability to activate this enzyme would relieve the MeCP2 overexpression phenotype. Surprisingly, severity was unaffected, indicating that the catalytic activity of HDAC3 is not the mediator of toxicity. Our findings shed light on the molecular mechanisms underlying MECP2 duplication syndrome and call for a re-evaluation of the precise biological role played by corepressor recruitment.


Assuntos
Expressão Gênica , Histona Desacetilases/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/toxicidade , Animais , Proteínas Correpressoras/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/genética , Técnicas de Inativação de Genes , Histona Desacetilases/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos , Mutação , Doenças do Sistema Nervoso/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Domínios Proteicos , Proteínas tau/metabolismo
2.
Annu Rev Cell Dev Biol ; 27: 631-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21721946

RESUMO

Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively. This review considers several key questions and attempts to evaluate the current state of evidence. For example, is MeCP2 just a methyl-CpG binding protein? Is it a multifunctional protein or primarily a transcriptional repressor? We also consider whether MeCP2, as a chromosome-binding protein, acts at specific sites within the genome or more globally, and in which cell types it is functionally important. Finally, we consider two alternative views of MeCP2 in the brain: as a regulator of brain development or as a factor that helps maintain neuronal/glial function.


Assuntos
Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Ilhas de CpG , Metilação de DNA , Humanos , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Nature ; 550(7676): 398-401, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29019980

RESUMO

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Assuntos
Teste de Complementação Genética , Terapia Genética/métodos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Deleção de Sequência , Células 3T3 , Animais , Encéfalo/metabolismo , DNA/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Mutação de Sentido Incorreto , Fenótipo , Domínios Proteicos/genética , Estabilidade Proteica , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Transdução Genética
4.
Hum Mol Genet ; 27(14): 2531-2545, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29718204

RESUMO

Most missense mutations causing Rett syndrome (RTT) affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterized domains. We studied the molecular consequences of four of these 'non-canonical' mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of RTT. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilize these mutant proteins may be of therapeutic value.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Repressoras/genética , Síndrome de Rett/genética , Animais , Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Mutação de Sentido Incorreto/genética , Neurônios/patologia , Síndrome de Rett/patologia
5.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26647311

RESUMO

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Assuntos
Alelos , Proteína 2 de Ligação a Metil-CpG/genética , Mutação de Sentido Incorreto , Síndrome de Rett/genética , Síndrome de Rett/patologia , Substituição de Aminoácidos , Animais , DNA/genética , DNA/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Fenótipo , Ligação Proteica , Síndrome de Rett/metabolismo , Síndrome de Rett/mortalidade , Índice de Gravidade de Doença , Transdução de Sinais , Análise de Sobrevida
6.
Hum Mol Genet ; 25(20): 4389-4404, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28173151

RESUMO

Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.


Assuntos
Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Fenótipo , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Síndrome de Rett/genética
7.
Nature ; 464(7291): 1082-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20393567

RESUMO

CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides. Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity. In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro. Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG/genética , Transativadores/metabolismo , Alelos , Animais , Encéfalo/citologia , Linhagem Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Genoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Metilação , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Transativadores/química , Transativadores/deficiência , Transativadores/genética , Dedos de Zinco
8.
Proc Natl Acad Sci U S A ; 109(35): 14230-5, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891354

RESUMO

The functional relevance of brain-derived neurotrophic factor (BDNF) is beginning to be well appreciated not only in mice, but also in humans. Because reduced levels typically correlate with impaired neuronal function, increasing BDNF levels with well-tolerated drugs diffusing into the central nervous system may help in ameliorating functional deficits. With this objective in mind, we used the sphingosine-1 phosphate receptor agonist fingolimod, a drug that crosses the blood-brain barrier. In addition, fingolimod has recently been introduced as the first oral treatment for multiple sclerosis. In cultured neurons, fingolimod increases BDNF levels and counteracts NMDA-induced neuronal death in a BDNF-dependent manner. Ongoing synaptic activity and MAPK signaling is required for fingolimod-induced BDNF increase, a pathway that can also be activated in vivo by systemic fingolimod administration. Mice lacking Mecp2, a gene frequently mutated in Rett syndrome, show decreased levels of BDNF, and fingolimod administration was found to partially rescue these levels as well as the size of the striatum, a volumetric sensor of BDNF signaling in rodents. These changes correlate with increased locomotor activity of the Mecp2-deficient animals, suggesting that fingolimod may improve the functional output of the nervous system, in addition to its well-documented effects on lymphocyte egress from lymph nodes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Síndrome de Rett/tratamento farmacológico , Síndrome de Rett/metabolismo , Esfingosina/análogos & derivados , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/deficiência , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Cloridrato de Fingolimode , Imunossupressores/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metilaspartato/toxicidade , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Gravidez , Síndrome de Rett/genética , Esfingosina/farmacologia
9.
Neurobiol Dis ; 68: 66-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769161

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Assuntos
Lesões Encefálicas/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Estresse Oxidativo/fisiologia , Síndrome de Rett/complicações , Síndrome de Rett/genética , Aldeídos/metabolismo , Análise de Variância , Animais , Ácido Araquidônico/metabolismo , Lesões Encefálicas/sangue , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Isoprostanos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangue
10.
Hum Mol Genet ; 21(17): 3806-14, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22653753

RESUMO

Rett Syndrome is a neurological disorder caused by mutations in the X-linked MECP2 gene. Mouse models where Mecp2 is inactivated or mutated recapitulate several features of the disorder and have demonstrated a requirement for the protein to ensure brain function in adult mice. We deleted the Mecp2 gene in ~80% of brain cells at three postnatal ages to determine whether the need for MeCP2 varies with age. Inactivation at all three time points induced Rett-like phenotypes and caused premature death of the animals. We find two threshold ages beyond which the requirement for MeCP2 markedly increases in stringency. The earlier threshold (8-14 weeks), when inactivated mice develop symptoms, represents early adulthood in the mouse and coincides with the period when Mecp2-null mice exhibit terminal symptoms. Unexpectedly, we identified a later age threshold (30-45 weeks) beyond which an 80% reduction in MeCP2 is incompatible with life. This finding suggests an enhanced role for MeCP2 in the aging brain.


Assuntos
Envelhecimento/genética , Inativação Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Loci Gênicos/genética , Aprendizagem/efeitos dos fármacos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Fenótipo , Recombinação Genética/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Análise de Sobrevida , Tamoxifeno/farmacologia
11.
Genome Res ; 21(7): 1074-86, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21628449

RESUMO

Human and mouse genomes contain a similar number of CpG islands (CGIs), which are discrete CpG-rich DNA sequences associated with transcription start sites. In both species, ∼50% of all CGIs are remote from annotated promoters but, nevertheless, often have promoter-like features. To determine the role of CGI methylation in cell differentiation, we analyzed DNA methylation at a comprehensive CGI set in cells of the mouse hematopoietic lineage. Using a method that potentially detects ∼33% of genomic CpGs in the methylated state, we found that large differences in gene expression were accompanied by surprisingly few DNA methylation changes. There were, however, many DNA methylation differences between hematopoietic cells and a distantly related tissue, brain. Altered DNA methylation in the immune system occurred predominantly at CGIs within gene bodies, which have the properties of cell type-restricted promoters, but infrequently at annotated gene promoters or CGI flanking sequences (CGI "shores"). Unexpectedly, elevated intragenic CGI methylation correlated with silencing of the associated gene. Differentially methylated intragenic CGIs tended to lack H3K4me3 and associate with a transcriptionally repressive environment regardless of methylation state. Our results indicate that DNA methylation changes play a relatively minor role in the late stages of differentiation and suggest that intragenic CGIs represent regulatory sites of differential gene expression during the early stages of lineage specification.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Sistema Imunitário/metabolismo , Animais , Linfócitos B/metabolismo , Diferenciação Celular/genética , Linhagem da Célula , Mapeamento Cromossômico , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Genoma , Sistema Hematopoético/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Sistema Imunitário/citologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Linfócitos T Auxiliares-Indutores/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
12.
Stem Cells ; 30(10): 2128-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865604

RESUMO

Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.


Assuntos
Encéfalo/metabolismo , Tamanho do Núcleo Celular/genética , Células-Tronco Embrionárias/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Síndrome de Rett/metabolismo , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Humanos , Lentivirus , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Knockout , Neurônios/patologia , Síndrome de Rett/genética , Síndrome de Rett/patologia , Transcrição Gênica , Transfecção
13.
Brain ; 135(Pt 9): 2699-710, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22525157

RESUMO

Rett syndrome is a neurological disorder caused by mutation of the X-linked MECP2 gene. Mice lacking functional Mecp2 display a spectrum of Rett syndrome-like signs, including disturbances in motor function and abnormal patterns of breathing, accompanied by structural defects in central motor areas and the brainstem. Although routinely classified as a neurodevelopmental disorder, many aspects of the mouse phenotype can be effectively reversed by activation of a quiescent Mecp2 gene in adults. This suggests that absence of Mecp2 during brain development does not irreversibly compromise brain function. It is conceivable, however, that deep-seated neurological defects persist in mice rescued by late activation of Mecp2. To test this possibility, we have quantitatively analysed structural and functional plasticity of the rescued adult male mouse brain. Activation of Mecp2 in ∼70% of neurons reversed many morphological defects in the motor cortex, including neuronal size and dendritic complexity. Restoration of Mecp2 expression was also accompanied by a significant improvement in respiratory and sensory-motor functions, including breathing pattern, grip strength, balance beam and rotarod performance. Our findings sustain the view that MeCP2 does not play a pivotal role in brain development, but may instead be required to maintain full neurological function once development is complete.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/patologia , Fenótipo , Síndrome de Rett/genética , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Inativação Gênica , Força da Mão/fisiologia , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Teste de Desempenho do Rota-Rod
14.
Wellcome Open Res ; 7: 185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966957

RESUMO

Cre/Lox technology is a powerful tool in the mouse genetics tool-box as it enables tissue-specific and inducible mutagenesis of specific gene loci. Correct interpretation of phenotypes depends upon knowledge of the Cre expression pattern in the chosen mouse driver line to ensure that appropriate cell types are targeted. For studies of the brain and neurological disease a pan-neuronal promoter that reliably drives efficient neuron-specific transgene expression would be valuable. Here we compare a widely used "pan-neuronal" mouse Cre driver line, Syn1-cre, with a little-known alternative, Snap25-IRES2-cre. Our results show that the Syn1-cre line broadly expresses in the brain but is indetectable in more than half of all neurons and weakly active in testes. In contrast the Snap25-IRES2-cre line expressed Cre in a high proportion of neurons (~85%) and was indetectable in all non-brain tissues that were analysed, including testes. Our findings suggest that for many purposes Snap25-IRES2-cre is superior to Syn1-cre as a potential pan-neuronal cre driver.

15.
Biochem Soc Trans ; 38(2): 498-506, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298210

RESUMO

Mutations in the X-linked MECP2 gene are the primary cause of the severe autism spectrum disorder RTT (Rett syndrome). Deletion of Mecp2 in mice recapitulates many of the overt neurological features seen in humans, and the delayed onset of symptoms is accompanied by deficits in neuronal morphology and synaptic physiology. Recent evidence suggests that reactivation of endogenous Mecp2 in young and adult mice can reverse aspects of RTT-like pathology. In the current perspective, we discuss these findings as well as other genetic, pharmacological and environmental interventions that attempt phenotypic rescue in RTT. We believe these studies provide valuable insights into the tractability of RTT and related conditions and are useful pointers for the development of future therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Síndrome de Rett/fisiopatologia , Síndrome de Rett/reabilitação , Síndrome de Rett/terapia , Animais , Meio Ambiente , Terapia Genética/métodos , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Camundongos , Preparações Farmacêuticas , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Síndrome de Rett/genética
16.
J Proteomics ; 210: 103537, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31629059

RESUMO

Rett syndrome (RTT) is a leading cause of severe intellectual disability in females, caused by de novo loss-of function mutations in the X-linked methyl-CpG binding protein 2 (MECP2). To better investigate RTT disease progression/pathogenesis animal models of Mecp2 deficiency have been developed. Here, Mecp2 mouse models are employed to investigate the role of protein patterns in RTT. A proteome analysis was carried out in brain tissue from i) Mecp2 deficient mice at the pre-symptomatic and symptomatic stages and, ii) mice in which the disease phenotype was reversed by Mecp2 reactivation. Several proteins were shown to be differentially expressed in the pre-symptomatic (n = 18) and symptomatic (n = 20) mice. Mecp2 brain reactivated mice showed wild-type comparable levels of expression for twelve proteins, mainly related to proteostasis (n = 4) and energy metabolic pathways (n = 4). The remaining ones were found to be involved in redox homeostasis (n = 2), nitric oxide regulation (n = 1), neurodevelopment (n = 1). Ten out of twelve proteins were newly linked to Mecp2 deficiency. Our study sheds light on the relevance of the protein-regulation of main physiological process in the complex mechanisms leading from Mecp2 mutation to the RTT clinical phenotype. SIGNIFICANCE: We performed a proteomic study of a Mecp2stop/y mouse model for Rett syndrome (RTT) at the pre-symptomatic and symptomatic Mecp2 deficient mice stage and for the brain specific reactivated Mecp2 model. Our results reveal major protein expression changes pointing out to defects in proteostasis or energy metabolic pathways other than, to a lesser extent, in redox homeostasis, nitric oxide regulation or neurodevelopment. The Mecp2 mouse rescued model provides the possibility to select target proteins more susceptible to the Mecp2 gene mutation, potential and promising therapeutical targets.


Assuntos
Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/fisiologia , Mutação , Estresse Oxidativo , Proteoma/metabolismo , Síndrome de Rett/etiologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteoma/análise , Proteômica/métodos , Síndrome de Rett/patologia
17.
Nat Commun ; 11(1): 4118, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807789

RESUMO

Epigenetic information is transmitted from mother to daughter cells through mitosis. Here, to identify factors that might play a role in conveying epigenetic memory through cell division, we report on the isolation of unfixed, native chromosomes from metaphase-arrested cells using flow cytometry and perform LC-MS/MS to identify chromosome-bound proteins. A quantitative proteomic comparison between metaphase-arrested cell lysates and chromosome-sorted samples reveals a cohort of proteins that were significantly enriched on mitotic ESC chromosomes. These include pluripotency-associated transcription factors, repressive chromatin-modifiers such as PRC2 and DNA methyl-transferases, and proteins governing chromosome architecture. Deletion of PRC2, Dnmt1/3a/3b or Mecp2 in ESCs leads to an increase in the size of individual mitotic chromosomes, consistent with de-condensation. Similar results were obtained by the experimental cleavage of cohesin. Thus, we identify chromosome-bound factors in pluripotent stem cells during mitosis and reveal that PRC2, DNA methylation and Mecp2 are required to maintain chromosome compaction.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , DNA Metiltransferase 3A , Imunofluorescência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Proteômica , DNA Metiltransferase 3B
18.
Mol Cell Biol ; 26(13): 5033-42, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782889

RESUMO

Rett syndrome (RTT) is a severe neurological disorder caused by mutations in the X-linked MECP2 gene, which encodes a methyl-CpG binding transcriptional repressor. Using the Mecp2-null mouse (an animal model for RTT) and differential display, we found that mice with neurological symptoms overexpress the nuclear gene for ubiquinol-cytochrome c reductase core protein 1 (Uqcrc1). Chromatin immunoprecipitation demonstrated that MeCP2 interacts with the Uqcrc1 promoter. Uqcrc1 encodes a subunit of mitochondrial respiratory complex III, and isolated mitochondria from the Mecp2-null brain showed elevated respiration rates associated with respiratory complex III and an overall reduction in coupling. A causal link between Uqcrc1 gene overexpression and enhanced complex III activity was established in neuroblastoma cells. Our findings raise the possibility that mitochondrial dysfunction contributes to pathology of the Mecp2-null mouse and may contribute to the long-known resemblance between Rett syndrome and certain mitochondrial disorders.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/genética , Síndrome de Rett/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Mutantes , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Regiões Promotoras Genéticas , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Ativação Transcricional
19.
Cell Rep ; 24(9): 2213-2220, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157418

RESUMO

MeCP2 is a nuclear protein that is mutated in the severe neurological disorder Rett syndrome (RTT). The ability to target ß-galactosidase to the nucleus was previously used to identify a conserved nuclear localization signal (NLS) in MeCP2 that interacts with the nuclear import factors KPNA3 and KPNA4. Here, we report that nuclear localization of MeCP2 does not depend on its NLS. Instead, our data reveal that an intact methyl-CpG binding domain (MBD) is sufficient for nuclear localization, suggesting that MeCP2 can be retained in the nucleus by its affinity for DNA. Consistent with these findings, we demonstrate that disease progression in a mouse model of RTT is unaffected by an inactivating mutation in the NLS of MeCP2. Taken together, our work reveals an unexpected redundancy between functional domains of MeCP2 in targeting this protein to the nucleus, potentially explaining why NLS-inactivating mutations are rarely associated with disease.


Assuntos
DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sinais de Localização Nuclear/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ilhas de CpG , DNA/genética , Modelos Animais de Doenças , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Síndrome de Rett/metabolismo , alfa Carioferinas/metabolismo
20.
Neurosci Res ; 105: 28-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26476268

RESUMO

Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Pirofosfatases/metabolismo , Síndrome de Rett/metabolismo , Animais , Glicosilação , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Mutantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa