Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 146(22)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31645357

RESUMO

During branching morphogenesis, a simple cluster of cells proliferates and branches to generate an arborized network that facilitates fluid flow. The overall architecture of the mouse lung is established by domain branching, wherein new branches form laterally off the side of an existing branch. The airway epithelium develops concomitantly with a layer of smooth muscle that is derived from the embryonic mesenchyme. Here, we examined the role of smooth muscle differentiation in shaping emerging domain branches. We found that the position and morphology of domain branches are highly stereotyped, as is the pattern of smooth muscle that differentiates around the base of each branch. Perturbing the pattern of smooth muscle differentiation genetically or pharmacologically causes abnormal domain branching. Loss of smooth muscle results in ectopic branching and decreases branch stereotypy. Increased smooth muscle suppresses branch initiation and extension. Computational modeling revealed that epithelial proliferation is insufficient to generate domain branches and that smooth muscle wrapping is required to shape the epithelium into a branch. Our work sheds light on the physical mechanisms of branching morphogenesis in the mouse lung.


Assuntos
Actinas/metabolismo , Diferenciação Celular , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Músculo Liso/citologia , Animais , Proliferação de Células , Cruzamentos Genéticos , Células Epiteliais/citologia , Epitélio/metabolismo , Feminino , Genótipo , Masculino , Mesoderma/metabolismo , Camundongos , Morfogênese , Músculo Liso/metabolismo , Organogênese , Domínios Proteicos , Transdução de Sinais
2.
Elife ; 112022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35899947

RESUMO

Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices, do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement, and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.


Assuntos
Actinas , Polaridade Celular , Actinas/metabolismo , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Miosinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa