Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 118(1): 21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227592

RESUMO

Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.


Assuntos
Cardiopatias , Sobrecarga de Ferro , Camundongos , Animais , Miócitos Cardíacos , Sobrecarga de Ferro/complicações , Ferro , Cálcio
2.
Pflugers Arch ; 473(3): 407-416, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33394082

RESUMO

Hibernation allows animals to enter an energy conserving state to survive severe drops in external temperatures and a shortage of food. It has been observed that the hearts of mammalian hibernators exhibit intrinsic protection against ischemia-reperfusion (I/R) injury and cardiac arrhythmias in the winter whether they are hibernating or not. However, the molecular and ionic mechanisms for cardioprotection in mammalian hibernators remain elusive. Recent studies in woodchucks (Marmota monax) have suggested that cardiac adaptation occurs at different levels and mediates an intrinsic cardioprotection prior to/in the winter. The molecular/cellular remodeling in the winter (with or without hibernation) includes (1) an upregulation of transcriptional factor, anti-apoptotic factor, nitric oxide synthase, protein kinase C-ε, and phosphatidylinositol-4,5-bisphosphate 3-kinase; (2) an upregulation of antioxidant enzymes (e.g. superoxide dismutase and catalase); (3) a reduction in the oxidation level of Ca2+/calmodulin-dependent protein kinase II (CaMKII); and (4) alterations in the expression and activity of multiple ion channels/transporters. Therefore, the cardioprotection against I/R injury in the winter is most likely mediated by enhancement in signaling pathways that are shared by preconditioning, reduced cell apoptosis, and increased detoxification of reactive oxygen species (ROS). The resistance to cardiac arrhythmias and sudden cardiac death in the winter is closely associated with an upregulation of the antioxidant catalase and a downregulation of CaMKII activation. This remodeling of the heart is associated with a reduction in the incidence of afterdepolarizations and triggered activities. In this short review article, we will discuss the seasonal changes in gene and protein expression profiles as well as alterations in the function of key proteins that are associated with the occurrence of cardioprotection against myocardial damage from ischemic events and fatal arrhythmias in a mammalian hibernator. Understanding the intrinsic cardiac adaptive mechanisms that confer cardioprotection in hibernators may offer new strategies to protect non-hibernating animals, especially humans, from I/R injury and ischemia-induced fatal cardiac arrhythmias.


Assuntos
Arritmias Cardíacas , Hibernação/fisiologia , Traumatismo por Reperfusão Miocárdica , Animais
3.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299010

RESUMO

The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.


Assuntos
ATPase de Ca(2+) e Mg(2+)/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/metabolismo , Adenosina Trifosfatases/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Animais , Antioxidantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/farmacologia , Dobutamina/farmacologia , Dobutamina/uso terapêutico , Insuficiência Cardíaca/fisiopatologia , Humanos
4.
Heart Fail Rev ; 23(5): 801-816, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29675595

RESUMO

Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.


Assuntos
Cardiomiopatias/metabolismo , Sobrecarga de Ferro/complicações , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Humanos , Sobrecarga de Ferro/metabolismo
5.
Mol Ther ; 22(12): 2038-2045, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25023328

RESUMO

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


Assuntos
Dependovirus/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Proteína Fosfatase 1/genética , Animais , Dependovirus/classificação , Dependovirus/enzimologia , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Injeções Intra-Arteriais , Proteína Fosfatase 1/metabolismo , Volume Sistólico , Suínos
6.
Mol Ther ; 20(3): 565-71, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22215018

RESUMO

SERCA2a gene therapy improves contractile and energetic function of failing hearts and has been shown to be associated with benefits in clinical outcomes, symptoms, functional status, biomarkers, and cardiac structure in a phase 2 clinical trial. In an effort to enhance the efficiency and homogeneity of gene uptake in cardiac tissue, we examined the effects of nitroglycerin (NTG) in a porcine model following AAV1.SERCA2a gene delivery. Three groups of Göttingen minipigs were assessed: (i) group A: control intracoronary (IC) AAV1.SERCA2a (n = 6); (ii) group B: a single bolus IC injection of NTG (50 µg) immediately before administration of intravenous (IV) AAV1.SERCA2a (n = 6); and (iii) group C: continuous IV NTG (1 µg/kg/minute) during the 10 minutes of AAV1.SERCA2a infusion (n = 6). We found that simultaneous IV infusion of NTG and AAV1.SERCA2a resulted in increased viral transduction efficiency, both in terms of messenger RNA (mRNA) as well as SERCA2a protein levels in the whole left ventricle (LV) compared to control animals. On the other hand, IC NTG pretreatment did not result in enhanced gene transfer efficiency, mRNA or protein levels when compared to control animals. Importantly, the transgene expression was restricted to the heart tissue. In conclusion, we have demonstrated that IV infusion of NTG significantly improves cardiac gene transfer efficiency in porcine hearts.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Miocárdio/metabolismo , Nitroglicerina/administração & dosagem , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Células Cultivadas , Circulação Coronária/efeitos dos fármacos , Expressão Gênica , Hemodinâmica/efeitos dos fármacos , Infusões Intra-Arteriais , Infusões Intravenosas , Masculino , Miócitos Cardíacos/metabolismo , Nitroglicerina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Suínos , Transdução Genética
7.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078133

RESUMO

Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19-related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.


Assuntos
COVID-19 , Doenças Cardiovasculares , Ferroptose , Traumatismo por Reperfusão , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos
8.
J Mol Cell Cardiol ; 50(5): 803-12, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21093451

RESUMO

While progress in conventional treatments is making steady and incremental gains to reduce mortality associated with heart failure, there remains a need to explore potentially new therapeutic approaches. Heart failure induced by different etiologies such as coronary artery disease, hypertension, diabetes, infection, or inflammation results generally in calcium cycling dysregulation at the myocyte level. Recent advances in understanding of the molecular basis of these calcium cycling abnormalities, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. Furthermore, the recent successful completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium pump (SERCA2a) ushers in a new era for gene therapy for the treatment of heart failure. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".


Assuntos
Terapia Genética/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Insuficiência Cardíaca/terapia , Humanos , Modelos Biológicos
9.
Circulation ; 121(10): 1216-26, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194882

RESUMO

BACKGROUND: Heart failure is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as idiopathic dilated cardiomyopathy (iDCM), the origin of heart failure is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of beta-amyloid impair cell function and lead to cell death. METHODS AND RESULTS: We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients, pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca(2+) homeostasis. Additionally, we have identified 2 new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 coimmunoprecipitates with SERCA2a. CONCLUSIONS: On the basis of these findings, we propose that 2 mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca(2+) handling and a direct effect of PSEN1 sequence variants on excitation-contraction coupling protein function.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Presenilina-1/genética , Proteínas/química , Adulto , Idoso , Amiloide/análise , Peptídeos beta-Amiloides/análise , Cálcio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Presenilina-2/genética
10.
Circ Arrhythm Electrophysiol ; 14(2): e009291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417472

RESUMO

BACKGROUND: Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca2+ (Ca2+i) handling in mouse left ventricular cardiomyocytes. METHODS: Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe3+/8-hydroxyquinoline complex (5-100 µM). Membrane potential and ionic currents including TRPC (transient receptor potential canonical) were recorded using the patch-clamp technique. Ca2+i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. RESULTS: We observed prolongation of the action potential duration and induction of early and delayed afterdepolarizations in myocytes superfused with 15 µmol/L Fe3+/8-hydroxyquinoline complex. Iron treatment decreased the peak amplitude of the L-type Ca2+ current and total K+ current, altered Ca2+i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca2+i waves and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished Ca2+i waves and restored the resting membrane potential to the normal range. The involvement of TRPC activation was confirmed by TRPC channel current recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same action potential and Ca2+i dynamics and provided additional mechanistic insights. CONCLUSIONS: We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca2+i dynamics.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sobrecarga de Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Sobrecarga de Ferro/patologia , Sobrecarga de Ferro/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp
11.
Front Cardiovasc Med ; 7: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158769

RESUMO

Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.

12.
Antioxidants (Basel) ; 9(8)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824344

RESUMO

Iron (Fe) plays an essential role in many physiological processes. Hereditary hemochromatosis or frequent blood transfusions often cause iron overload (IO), which can lead to cardiomyopathy and arrhythmias; however, the underlying mechanism is not well defined. In the present study, we assess the hypothesis that IO promotes arrhythmias via reactive oxygen species (ROS) production, mitochondrial membrane potential (∆Ψm) depolarization, and disruption of cytosolic Ca dynamics. In ventricular myocytes isolated from wild type (WT) mice, both cytosolic and mitochondrial Fe levels were elevated following perfusion with the Fe3+/8-hydroxyquinoline (8-HQ) complex. IO promoted mitochondrial superoxide generation (measured using MitoSOX Red) and induced the depolarization of the ΔΨm (measured using tetramethylrhodamine methyl ester, TMRM) in a dose-dependent manner. IO significantly increased the rate of Ca wave (CaW) formation measured in isolated ventricular myocytes using Fluo-4. Furthermore, in ex-vivo Langendorff-perfused hearts, IO increased arrhythmia scores as evaluated by ECG recordings under programmed S1-S2 stimulation protocols. We also carried out similar experiments in cyclophilin D knockout (CypD KO) mice in which the mitochondrial permeability transition pore (mPTP) opening is impaired. While comparable cytosolic and mitochondrial Fe load, mitochondrial ROS production, and depolarization of the ∆Ψm were observed in ventricular myocytes isolated from both WT and CypD KO mice, the rate of CaW formation in isolated cells and the arrhythmia scores in ex-vivo hearts were significantly lower in CypD KO mice compared to those observed in WT mice under conditions of IO. The mPTP inhibitor cyclosporine A (CsA, 1 µM) also exhibited a protective effect. In conclusion, our results suggest that IO induces mitochondrial ROS generation and ∆Ψm depolarization, thus opening the mPTP, thereby promoting CaWs and cardiac arrhythmias. Conversely, the inhibition of mPTP ameliorates the proarrhythmic effects of IO.

13.
Biophys J ; 94(9): 3577-89, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18212018

RESUMO

Troponin C (TnC) belongs to the superfamily of EF-hand (helix-loop-helix) Ca(2+)-binding proteins and is an essential component of the regulatory thin filament complex. In a patient diagnosed with idiopathic dilated cardiomyopathy, we identified two novel missense mutations localized in the regulatory Ca(2+)-binding Site II of TnC, TnC((E59D,D75Y)). Expression of recombinant TnC((E59D,D75Y)) in isolated rat cardiomyocytes induced a marked decrease in contractility despite normal intracellular calcium homeostasis in intact cardiomyocytes and resulted in impaired myofilament calcium responsiveness in Triton-permeabilized cardiomyocytes. Expression of the individual mutants in cardiomyocytes showed that TnC(D75Y) was able to recapitulate the TnC((E59D,D75Y)) phenotype, whereas TnC(E59D) was functionally benign. Force-pCa relationships in TnC((E59D,D75Y)) reconstituted rabbit psoas fibers and fluorescence spectroscopy of TnC((E59D,D75Y)) labeled with 2-[(4'-iodoacetamide)-aniline]naphthalene-6-sulfonic acid showed a decrease in myofilament Ca(2+) sensitivity and Ca(2+) binding affinity, respectively. Furthermore, computational analysis of TnC showed the Ca(2+)-binding pocket as an active region of concerted motions, which are decreased markedly by mutation D75Y. We conclude that D75Y interferes with proper concerted motions within the regulatory Ca(2+)-binding pocket of TnC that hinders the relay of the thin filament calcium signal, thereby providing a primary stimulus for impaired cardiomyocyte contractility. This in turn may trigger pathways leading to aberrant ventricular remodeling and ultimately a dilated cardiomyopathy phenotype.


Assuntos
Cálcio/metabolismo , Movimento/fisiologia , Mutação de Sentido Incorreto , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Troponina C/genética , Troponina C/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Permeabilidade da Membrana Celular , Regulação da Expressão Gênica , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Ligação Proteica , Músculos Psoas/citologia , Músculos Psoas/metabolismo , Coelhos , Sarcômeros/genética , Sarcômeros/metabolismo , Especificidade por Substrato , Troponina C/química
14.
Physiol Genomics ; 33(2): 267-77, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18303083

RESUMO

Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men.


Assuntos
Cardiomiopatia Dilatada/genética , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Caracteres Sexuais , Idoso , Western Blotting , Cardiomiopatia Dilatada/enzimologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Miocárdio/patologia , Especificidade de Órgãos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
15.
J Clin Invest ; 115(8): 2128-38, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16007268

RESUMO

Acute activation of the serine-threonine kinase Akt is cardioprotective and reduces both infarction and dysfunction after ischemia/reperfusion injury (IRI). However, less is known about the chronic effects of Akt activation in the heart, and, paradoxically, Akt is activated in samples from patients with chronic heart failure. We generated Tg mice with cardiac-specific expression of either activated (myristoylated [myr]) or dominant-negative (dn) Akt and assessed their response to IRI in an ex vivo model. While dn-Akt hearts demonstrated a moderate reduction in functional recovery after IRI, no function was restored in any of the myr-Akt-Tg hearts. Moreover, infarcts were dramatically larger in myr-Akt-Tg hearts. Biochemical analyses demonstrated that chronic Akt activation induces feedback inhibition of PI3K activity through both proteasome-dependent degradation of insulin receptor substrate-1 (IRS-1) and inhibition of transcription of IRS-1 as well as that of IRS-2. To test the functional significance of these signaling changes, we performed in vivo cardiac gene transfer with constitutively active PI3K in myr-Akt-Tg mice. Restoration of PI3K rescued function and reduced injury after IRI. These data demonstrate that PI3K-dependent but Akt-independent effectors are required for full cardioprotection and suggest a mechanism by which chronic Akt activation can become maladaptive.


Assuntos
Ativação Enzimática , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Ativação Enzimática/genética , Regulação da Expressão Gênica/genética , Genes Dominantes/genética , Humanos , Proteínas Substratos do Receptor de Insulina , Camundongos , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Fosfoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Recuperação de Função Fisiológica/genética
16.
Alcohol Clin Exp Res ; 32(5): 814-21, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18336640

RESUMO

BACKGROUND: Excessive alcohol consumption is recognized as a cause of left ventricular dysfunction and leads often to alcohol-induced heart failure. It is thought that 36% of all cases of dilated cardiomyopathy are due to excessive alcohol intake. In addition, since chronic alcohol-consumption is a social behavior that is not always clearly self-reported clinically, it has been difficult to diagnose alcohol-induced heart failure versus heart failure due to idiopathic dilated cardiomyopathy (IDCM). Interestingly, both diseases are associated with left ventricular dysfunction and congestive heart failure. METHODS: We have created a human heart failure cDNA array for IDCM from nonfailing and failing human hearts. The array contains 1,143 heart specific oligonucleotide probes. This array was used to screen RNA samples from transplant recipients and organ donors with alcohol-related heart failure. RESULTS: Our study shows that alcohol-induced heart failure has a "specific fingerprint" profile of de-regulated genes. This profile can differentiate patients with pure alcohol-induced heart failure from patients with heart failure from IDCM with alcohol as a complicating or contributing factor. Furthermore, the pattern of gene de-regulation suggests a pivotal role for changes in matrix, cytoskeletal, and structural proteins in the development of clinical heart failure resulting from excessive alcohol consumption. CONCLUSIONS: We report for the first time a genomic "fingerprint" profile of de-regulated genes associated with human alcohol-induced heart failure. We conclude that the pathogenesis of alcohol-induced heart failure in humans is likely related to changes in architectural (e.g. cytoskeletal), matrix, and/or structural proteins. The reversibility of the disease upon cessation of alcohol consumption makes this a likely pathogenetic mechanism. Nevertheless, there is a point at which extracellular as well as cellular changes result in irreversible heart failure.


Assuntos
Transtornos Induzidos por Álcool/metabolismo , Insuficiência Cardíaca/metabolismo , Transtornos Induzidos por Álcool/complicações , Transtornos Induzidos por Álcool/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Ventrículos do Coração/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos
17.
Pacing Clin Electrophysiol ; 31(10): 1246-52, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18811803

RESUMO

BACKGROUND: Left ventricular assist devices (LVADs) have been used as a bridge to cardiac transplantation and as destination therapy in patients with advanced heart failure. The period after LVAD support is associated with ventricular arrhythmias (VAs) despite ventricular unloading and such VAs can have a detrimental effect on survival. Despite the increasing use of LVAD, little is known regarding post-LVAD VAs at the molecular level and in vivo. METHODS: Forty-two patients who received LVAD over a 24-month period were evaluated and grouped on the basis of the presence or absence of VAs during LVAD support. We completed a comparative microarray analyses between six patients who developed ventricular tachycardia (VT) or ventricular fibrillation (VF) after LVAD support and six patients who did not develop VAs after LVAD. RESULTS: VAs occurred in 15 patients (35.7%) during LVAD support at a median post-LVAD day of 25.2. VAs were strongly associated with nonusage of a beta-blocker post-LVAD (odds ratio of 7.04, P-value = 0.001). Analysis of a subset of patients who had VT or VF after LVAD placement showed a decrease in the expression of connexin 43 (0.48 +/- 0.07), Na+/K+-ATPase (0.60 +/- 0.05), and voltage-gated K+ channel Kv4.3 (0.42 +/- 0.04), and an increase in Na+/Ca2+ exchanger (2.2 +/- 0.4) and the structural genes: Titin (2.1 +/- 0.2), laminin (1.7 +/- 0.4), calsequestrin (1.8 +/- 0.5), skeletal muscle isoform of troponin T (5.1 +/- 0.9), and skeletal muscle isoform of troponin I (3.9 +/- 0.7). CONCLUSION: After LVAD, the increased risk of VAs is strongly associated with nonusage of beta-blocker postoperatively.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Coração Auxiliar/efeitos adversos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle , Estudos de Coortes , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Taquicardia Ventricular/diagnóstico , Resultado do Tratamento
19.
Artigo em Inglês | MEDLINE | ID: mdl-29843384

RESUMO

Alcohol abuse can affect more than the heart and the liver. Many observers often do not appreciate the complex and differing aspects of alcohol's effects in pathophysiologies that have been reported in multiple organs. Chronic alcohol abuse is known to be associated with pathophysiological changes that often result in life-threatening clinical outcomes, e.g., breast and colon cancer, pancreatic disease, cirrhosis of the liver, diabetes, osteoporosis, arthritis, kidney disease, immune system dysfunction, hypertension, coronary artery disease, cardiomyopathy, and can be as far-reaching as to cause central nervous system disorders. In this review article, we will discuss the various organs impacted by alcohol abuse. The lack of clear guidelines on the amount and frequency of alcohol intake, complicated by personal demographics, make extrapolations to real-life practices at best difficult for public health policy-makers.


Assuntos
Alcoolismo/fisiopatologia , Alcoolismo/complicações , Fenômenos Fisiológicos Celulares , Humanos
20.
Biochem J ; 395(2): 249-58, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16402920

RESUMO

We recently documented the expression of a novel human mRNA variant encoding a yet uncharacterized SERCA [SR (sarcoplasmic reticulum)/ER (endoplasmic reticulum) Ca2+-ATPase] protein, SERCA2c [Gélébart, Martin, Enouf and Papp (2003) Biochem. Biophys. Res. Commun. 303, 676-684]. In the present study, we have analysed the expression and functional characteristics of SERCA2c relative to SERCA2a and SERCA2b isoforms upon their stable heterologous expression in HEK-293 cells (human embryonic kidney 293 cells). All SERCA2 proteins induced an increased Ca2+ content in the ER of intact transfected cells. In microsomes prepared from transfected cells, SERCA2c showed a lower apparent affinity for cytosolic Ca2+ than SERCA2a and a catalytic turnover rate similar to SERCA2b. We further demonstrated the expression of the endogenous SERCA2c protein in protein lysates isolated from heart left ventricles using a newly generated SERCA2c-specific antibody. Relative to the known uniform distribution of SERCA2a and SERCA2b in cardiomyocytes of the left ventricle tissue, SERCA2c was only detected in a confined area of cardiomyocytes, in close proximity to the sarcolemma. This finding led us to explore the expression of the presently known cardiac Ca2+-ATPase isoforms in heart failure. Comparative expression of SERCAs and PMCAs (plasma-membrane Ca2+-ATPases) was performed in four nonfailing hearts and five failing hearts displaying mixed cardiomyopathy and idiopathic dilated cardiomyopathies. Relative to normal subjects, cardiomyopathic patients express more PMCAs than SERCA2 proteins. Interestingly, SERCA2c expression was significantly increased (166+/-26%) in one patient. Taken together, these results demonstrate the expression of the novel SERCA2c isoform in the heart and may point to a still unrecognized role of PMCAs in cardiomyopathies.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cardiomiopatias/enzimologia , Cardiomiopatias/patologia , Retículo Endoplasmático/enzimologia , Miocárdio/citologia , Miocárdio/enzimologia , Retículo Sarcoplasmático/enzimologia , Adulto , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Miocárdio/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa