Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345109

RESUMO

The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A 'think tank' of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help 'rebrand' the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.


Assuntos
Biologia do Desenvolvimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-37553824

RESUMO

Kryptolebias marmoratus (Kmar), a teleost fish of the order Cyprinodontiformes, has a suite of unique phenotypes and behaviors not observed in other fishes. Many of these phenotypes are discrete and highly plastic-varying over time within an individual, and in some cases reversible. Kmar and its interfertile sister species, K. hermaphroditus, are the only known self-fertile vertebrates. This unusual sexual mode has the potential to provide unique insights into the regulation of vertebrate sexual development, and also lends itself to genetics. Kmar is easily adapted to the lab and requires little maintenance. However, its internal fertilization and small clutch size limits its experimental use. To support Kmar as a genetic model, we compared alternative husbandry techniques to maximize recovery of early cleavage-stage embryos. We find that frequent egg collection enhances yield, and that protease treatment promotes the greatest hatching success. We completed a forward mutagenesis screen and recovered several mutant lines that serve as important tools for genetics in this model. Several will serve as useful viable recessive markers for marking crosses. Importantly, the mutant kissylips lays embryos at twice the rate of wild-type. Combining frequent egg collection with the kissylips mutant background allows for a substantial enhancement of early embryo yield. These improvements were sufficient to allow experimental analysis of early development and the successful mono- and bi-allelic targeted knockout of an endogenous tyrosinase gene with CRISPR/Cas9 nucleases. Collectively, these tools will facilitate modern developmental genetics in this fascinating fish, leading to future insights into the regulation of plasticity.

3.
Proc Natl Acad Sci U S A ; 116(26): 12919-12924, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189601

RESUMO

The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Deleção de Genes , Razão de Masculinidade , Animais , Proteínas de Caenorhabditis elegans/genética , Feminino , Organismos Hermafroditas/genética , Infertilidade Masculina/genética , Masculino , Seleção Genética , Autofertilização/genética , Espermatozoides/metabolismo
4.
Dev Biol ; 446(2): 193-205, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30599151

RESUMO

Proper germ cell sex determination in Caenorhabditis nematodes requires a network of RNA-binding proteins (RBPs) and their target mRNAs. In some species, changes in this network enabled limited XX spermatogenesis, and thus self-fertility. In C. elegans, one of these selfing species, the global sex-determining gene tra-2 is regulated in germ cells by a conserved RBP, GLD-1, via the 3' untranslated region (3'UTR) of its transcript. A C. elegans-specific GLD-1 cofactor, FOG-2, is also required for hermaphrodite sperm fate, but how it modifies GLD-1 function is unknown. Germline feminization in gld-1 and fog-2 null mutants has been interpreted as due to cell-autonomous elevation of TRA-2 translation. Consistent with the proposed role of FOG-2 in translational control, the abundance of nearly all GLD-1 target mRNAs (including tra-2) is unchanged in fog-2 mutants. Epitope tagging reveals abundant TRA-2 expression in somatic tissues, but an undetectably low level in wild-type germ cells. Loss of gld-1 function elevates germline TRA-2 expression to detectable levels, but loss of fog-2 function does not. A simple quantitative model of tra-2 activity constrained by these results can successfully sort genotypes into normal or feminized groups. Surprisingly, fog-2 and gld-1 activity enable the sperm fate even when GLD-1 cannot bind to the tra-2 3' UTR. This suggests the GLD-1-FOG-2 complex regulates uncharacterized sites within tra-2, or other mRNA targets. Finally, we quantify the RNA-binding capacities of dominant missense alleles of GLD-1 that act genetically as "hyper-repressors" of tra-2 activity. These variants bind RNA more weakly in vitro than does wild-type GLD-1. These results indicate that gld-1 and fog-2 regulate germline sex via multiple interactions, and that our understanding of the control and evolution of germ cell sex determination in the C. elegans hermaphrodite is far from complete.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Organismos Hermafroditas/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Organismos Hermafroditas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
5.
PLoS Biol ; 12(7): e1001915, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25072732

RESUMO

Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility.


Assuntos
Caenorhabditis/fisiologia , Reprodução/fisiologia , Isolamento Reprodutivo , Espermatozoides/fisiologia , Animais , Feminino , Organismos Hermafroditas/fisiologia , Infertilidade/etiologia , Inseminação , Masculino , Comportamento Sexual Animal , Especificidade da Espécie
7.
Trends Genet ; 28(5): 213-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22480920

RESUMO

Reproduction is directly connected to the suite of developmental and physiological mechanisms that enable it, but how it occurs also has consequences for the genetics, ecology and longer term evolutionary potential of a lineage. In the nematode Caenorhabditis elegans, anatomically female XX worms can self-fertilize their eggs. This ability evolved recently and in multiple Caenorhabditis lineages from male-female ancestors, providing a model for examining both the developmental causes and longer term consequences of a novel, convergently evolved reproductive mode. Here, we review recent work that implicates translation control in the evolution of XX spermatogenesis, with different selfing lineages possessing both reproducible and idiosyncratic features. We also discuss the consequences of selfing, which leads to a rapid loss of variation and relaxation of natural and sexual selection on mating-related traits, and may ultimately put selfing lineages at a higher risk of extinction.


Assuntos
Evolução Biológica , Caenorhabditis elegans/fisiologia , Reprodução/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Masculino , Modelos Biológicos , Nematoides/genética , Nematoides/fisiologia , Filogenia , Reprodução/genética
8.
Development ; 139(8): 1509-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22399679

RESUMO

The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , Animais , Caenorhabditis elegans , Evolução Molecular , Feminino , Células Germinativas/citologia , Imuno-Histoquímica/métodos , Masculino , Microscopia de Contraste de Fase/métodos , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Interferência de RNA , Transgenes , Técnicas do Sistema de Duplo-Híbrido
9.
Development ; 138(13): 2633-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21652645

RESUMO

The recent Keystone Symposium on Evolutionary Developmental Biology at Tahoe City in February 2011 provided an opportunity to take stock of where the past three decades have brought this interdisciplinary field. It revealed maturation on several fronts, including increased experimental rigor, the softening of dichotomies that were crucial to its founding and growth, and its growing relevance to both basic and biomedical biology.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento/métodos , Animais , Genética Populacional
10.
J Exp Zool B Mol Dev Evol ; 322(3): 129-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24254995

RESUMO

Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.


Assuntos
Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/genética , Proteínas de Helminto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Evolução Biológica , Feminino , Larva/crescimento & desenvolvimento , Desenvolvimento Muscular/fisiologia , Mutação , Faringe/crescimento & desenvolvimento , Faringe/fisiopatologia , Vulva/crescimento & desenvolvimento , Vulva/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 108(49): 19672-7, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106259

RESUMO

Pleiotropic developmental regulators have been repeatedly linked to the evolution of anatomical novelties. Known mechanisms include cis-regulatory DNA changes that alter regulator transcription patterns or modify target-gene linkages. Here, we examine the role of another form of regulation, translational control, in the repeated evolution of self-fertile hermaphroditism in Caenorhabditis nematodes. Caenorhabditis elegans hermaphrodites initiate spermatogenesis in an otherwise female body through translational repression of the gene tra-2. This repression is mediated by GLD-1, an RNA-binding protein also required for oocyte meiosis and differentiation. By contrast, we show that in the convergently hermaphroditic Caenorhabditis briggsae, GLD-1 acts to promote oogenesis. The opposite functions of gld-1 in these species are not gene-intrinsic, but instead result from the unique contexts for its action that evolved in each. In C. elegans, GLD-1 became essential for promoting XX spermatogenesis via changes in the tra-2 mRNA and evolution of the species-specific protein FOG-2. C. briggsae GLD-1 became an essential repressor of sperm-promoting genes, including Cbr-puf-8, and did not evolve a strong association with tra-2. Despite its variable roles in sex determination, the function of gld-1 in female meiotic progression is ancient and conserved. This conserved role may explain why gld-1 is repeatedly recruited to regulate hermaphroditism. We conclude that, as with transcription factors, spatially localized translational regulators play important roles in the evolution of anatomical novelties.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Sequência de Aminoácidos , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Feminino , Teste de Complementação Genética , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Immunoblotting , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Oócitos/citologia , Oócitos/metabolismo , Filogenia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Espermatogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
PLoS Genet ; 7(7): e1002174, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779179

RESUMO

The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Endogamia , Recombinação Genética/genética , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Feminino , Rearranjo Gênico/genética , Variação Genética , Genoma/genética , Genótipo , Desequilíbrio de Ligação/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
13.
Adv Exp Med Biol ; 757: 405-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22872485

RESUMO

Germ cells share core attributes and homologous molecular components across animal phyla. Nevertheless, abrupt shifts in reproductive mode often occur that are mediated by the rapid evolution of germ cell properties. Studies of Caenorhabditis nematodes show how the otherwise conserved RNA-binding proteins (RBPs) that regulate germline development and differentiation can undergo surprisingly rapid functional evolution. This occurs even as the narrow biochemical tasks performed by the RBPs remain constant. The biological roles of germline RBPs are thus highly context-dependent, and the inference of archetypal roles from isolated models in different phyla may therefore be premature.


Assuntos
Evolução Biológica , Caenorhabditis elegans/genética , Células Germinativas/fisiologia , Proteínas de Ligação a RNA/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Células Germinativas/citologia , Filogenia
15.
Dev Cell ; 10(4): 531-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16580997

RESUMO

The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.


Assuntos
Caenorhabditis/genética , Transtornos do Desenvolvimento Sexual/genética , Polimorfismo Genético , Animais , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C , Especificidade da Espécie , Espermatogênese/genética
16.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359962

RESUMO

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.


Assuntos
Fertilidade/fisiologia , Nematoides/metabolismo , Reprodução/fisiologia , Razão de Masculinidade , Animais , Humanos , Masculino , Seleção Genética , Espermatozoides/citologia
17.
BMC Genomics ; 11: 236, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20385026

RESUMO

BACKGROUND: The nematode C. briggsae serves as a useful model organism for comparative analysis of developmental and behavioral processes. The amenability of C. briggsae to genetic manipulations and the availability of its genome sequence have prompted researchers to study evolutionary changes in gene function and signaling pathways. These studies rely on the availability of forward genetic tools such as mutants and mapping markers. RESULTS: We have computationally identified more than 30,000 polymorphisms (SNPs and indels) in C. briggsae strains AF16 and HK104. These include 1,363 SNPs that change restriction enzyme recognition sites (snip-SNPs) and 638 indels that range between 7 bp and 2 kb. We established bulk segregant and single animal-based PCR assay conditions and used these to test 107 polymorphisms. A total of 75 polymorphisms, consisting of 14 snip-SNPs and 61 indels, were experimentally confirmed with an overall success rate of 83%. The utility of polymorphisms in genetic studies was demonstrated by successful mapping of 12 mutations, including 5 that were localized to sub-chromosomal regions. Our mapping experiments have also revealed one case of a misassembled contig on chromosome 3. CONCLUSIONS: We report a comprehensive set of polymorphisms in C. briggsae wild-type strains and demonstrate their use in mapping mutations. We also show that molecular markers can be useful tools to improve the C. briggsae genome sequence assembly. Our polymorphism resource promises to accelerate genetic and functional studies of C. briggsae genes.


Assuntos
Caenorhabditis/genética , Mapeamento Cromossômico/métodos , Animais , Mutação INDEL , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único
18.
Curr Biol ; 17(5): R172-4, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17339017

RESUMO

Developmental mechanisms can evolve even when the trait they produce does not, and the nematode vulva has become a model organ for detecting such "developmental system drift". A new study reveals what may be the very earliest stages of this process by experimentally modifying key vulval signaling pathways in different species of Caenorhabditis, and carefully quantifying the results.


Assuntos
Evolução Biológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Vulva/embriologia , Animais , Padronização Corporal , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Indução Embrionária , Feminino
19.
Trends Genet ; 23(3): 101-4, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17275130

RESUMO

Caenorhabditis elegans is widely known as a model organism for cell, molecular, developmental and neural biology, but it is also being used for evolutionary studies. A recent meeting of researchers in Portugal covered topics as diverse as phylogenetics, genetic mapping of quantitative and qualitative intraspecific variation, evolutionary developmental biology and population genetics. Here, we summarize the main findings of the meeting, which marks the formal birth of a research community dedicated to Caenorhabditis species evolution.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Animais , Mapeamento Cromossômico , Variação Genética , Genética Populacional , Filogenia
20.
Dev Cell ; 6(2): 157-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14960266

RESUMO

The X chromosome is largely inactivated in spermatogenesis of heterogametic males, and in multiple phyla it encodes few genes specifically expressed in the male germline. Writing in Nature Genetics, Bean et al. report a parallel between male germline X inactivation in nematodes and a fungal gene-silencing mechanism that alters the way we view the evolution of both phenomena.


Assuntos
Impressão Genômica , Células Germinativas/fisiologia , Sexo , Cromossomo X , Animais , Mecanismo Genético de Compensação de Dose , Evolução Molecular , Inativação Gênica , Humanos , Masculino , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa