Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Opin HIV AIDS ; 19(2): 79-86, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169427

RESUMO

PURPOSE OF REVIEW: Achieving ART-free remission without the need for lifelong antiretroviral treatment (ART) is a new objective in HIV-1 therapeutics. This review comprehensively examines the literature to evaluate whether the age at ART initiation in children with perinatal HIV-1 influences the size and decay of the HIV-1 reservoir. The insights gathered from this review serve to inform the field on the unique dynamics of HIV-1 reservoir size in perinatal HIV-1 infection as a function of age at ART initiation, as well as inform biomarker profiling and timing of ART-free remission strategies for children living with HIV-1 globally. RECENT FINDINGS: Recent studies demonstrate that initiating very early effective ART in neonates is feasible and limits HIV-1 reservoir size. The clinical relevance of limiting the HIV-1 reservoir size in perinatal infection was recently demonstrated in the Tatelo Study, which investigated a treatment switch from ART to two broadly neutralizing antibodies (bNAbs) in very early treated children. Low proviral reservoir size was associated with sustained virologic control for 24 weeks on bNAbs. SUMMARY: Immediate and early ART initiation for neonates and infants with perinatal HIV-1 is essential to restricting HIV-1 reservoir size that may enable ART-free remission.


Assuntos
Infecções por HIV , HIV-1 , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Antirretrovirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/uso terapêutico , Provírus/genética
2.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669882

RESUMO

Metabolomics is increasingly popular for the study of pathogens. For the malaria parasite Plasmodium falciparum, both targeted and untargeted metabolomics have improved our understanding of pathogenesis, host-parasite interactions, and antimalarial drug treatment and resistance. However, purification and analysis procedures for performing metabolomics on intracellular pathogens have not been explored. Here, we purified in vitro-grown ring-stage intraerythrocytic P. falciparum parasites for untargeted metabolomics studies; the small size of this developmental stage amplifies the challenges associated with metabolomics studies as the ratio between host and parasite biomass is maximized. Following metabolite identification and data preprocessing, we explored multiple confounding factors that influence data interpretation, including host contamination and normalization approaches (including double-stranded DNA, total protein, and parasite numbers). We conclude that normalization parameters have large effects on differential abundance analysis and recommend the thoughtful selection of these parameters. However, normalization does not remove the contribution from the parasite's extracellular environment (culture media and host erythrocyte). In fact, we found that extraparasite material is as influential on the metabolome as treatment with a potent antimalarial drug with known metabolic effects (artemisinin). Because of this influence, we could not detect significant changes associated with drug treatment. Instead, we identified metabolites predictive of host and medium contamination that could be used to assess sample purification. Our analysis provides the first quantitative exploration of the effects of these factors on metabolomics data analysis; these findings provide a basis for development of improved experimental and analytical methods for future metabolomics studies of intracellular organisms.IMPORTANCE Molecular characterization of pathogens such as the malaria parasite can lead to improved biological understanding and novel treatment strategies. However, the distinctive biology of the Plasmodium parasite, including its repetitive genome and the requirement for growth within a host cell, hinders progress toward these goals. Untargeted metabolomics is a promising approach to learn about pathogen biology. By measuring many small molecules in the parasite at once, we gain a better understanding of important pathways that contribute to the parasite's response to perturbations such as drug treatment. Although increasingly popular, approaches for intracellular parasite metabolomics and subsequent analysis are not well explored. The findings presented in this report emphasize the critical need for improvements in these areas to limit misinterpretation due to host metabolites and to standardize biological interpretation. Such improvements will aid both basic biological investigations and clinical efforts to understand important pathogens.


Assuntos
Eritrócitos/parasitologia , Espaço Intracelular/parasitologia , Metaboloma , Plasmodium falciparum/metabolismo , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Meios de Cultura/química , Genoma de Protozoário , Interações Hospedeiro-Parasita , Malária Falciparum/metabolismo , Espectrometria de Massas , Metabolômica , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa