Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 197(3): 246-256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33103231

RESUMO

PURPOSE: To share our experiences in implementing a dedicated magnetic resonance (MR) scanner for radiotherapy (RT) treatment planning using a novel coil setup for brain imaging in treatment position as well as to present developed core protocols with sequences specifically tuned for brain and prostate RT treatment planning. MATERIALS AND METHODS: Our novel setup consists of two large 18-channel flexible coils and a specifically designed wooden mask holder mounted on a flat tabletop overlay, which allows patients to be measured in treatment position with mask immobilization. The signal-to-noise ratio (SNR) of this setup was compared to the vendor-provided flexible coil RT setup and the standard setup for diagnostic radiology. The occurrence of motion artifacts was quantified. To develop magnetic resonance imaging (MRI) protocols, we formulated site- and disease-specific clinical objectives. RESULTS: Our novel setup showed mean SNR of 163 ± 28 anteriorly, 104 ± 23 centrally, and 78 ± 14 posteriorly compared to 84 ± 8 and 102 ± 22 anteriorly, 68 ± 6 and 95 ± 20 centrally, and 56 ± 7 and 119 ± 23 posteriorly for the vendor-provided and diagnostic setup, respectively. All differences were significant (p > 0.05). Image quality of our novel setup was judged suitable for contouring by expert-based assessment. Motion artifacts were found in 8/60 patients in the diagnostic setup, whereas none were found for patients in the RT setup. Site-specific core protocols were designed to minimize distortions while optimizing tissue contrast and 3D resolution according to indication-specific objectives. CONCLUSION: We present a novel setup for high-quality imaging in treatment position that allows use of several immobilization systems enabling MR-only workflows, which could reduce unnecessary dose and registration inaccuracies.


Assuntos
Neoplasias Encefálicas/radioterapia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/instrumentação , Neuroimagem/métodos , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/instrumentação
2.
Phys Imaging Radiat Oncol ; 22: 111-114, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35619641

RESUMO

Motion management is essential in treatment planning of radiotherapy for breast cancer. This study assessed the movement of organs-at-risk and the breast using 4D magnetic resonance imaging (MRI). A self-gating respiration-resolved radial 3D gradient echo sequence was used. Five healthy volunteers were imaged at 1.5 T during free-breathing in supine position making use of a breast board. Median distances between heart and chest wall in axial views were 2.4 cm (range: 1.5 cm) and 3.0 cm (range: 1.7 cm) for end-of-exhale and end-of-inhale. 4D-MRI allowed organ delineation and might be a promising addition to novel RT planning for breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa