RESUMO
The coherent anti-Stokes Raman spectroscopy (CARS) techniques are recognized for their ability to detect and identify vibrational coherent processes down to the single-molecular levels. Plasmonic oligomers supporting full-range Fano-like line profiles in their scattering spectrum are one of the most promising class of substrates in the context of surface-enhanced (SE) CARS application. In this work, an engineered assembly of metallic disk-shaped nanoparticles providing two Fano-like resonance modes is presented as a highly-efficient design of SECARS substrate. We show that the scattering dips corresponding to the double-Fano spectral line shapes are originated from the mutual interaction of electric and toroidal dipole moments, leading to the so-called non-trivial first- and second-order anapole states. The anapole modes, especially the higher-order ones, can result in huge near-field enhancement due to their light-trapping capability into the so-called "hot spots". In addition, independent spectral tunability of the second Fano line shape is exhibited by modulating the gap distance of the corner particles. This feature is closely related to the electric current loop associated with the corner particles in the second-order anapole state and provides a simple design procedure of an optimum SECARS substrate, where the electric field hot spots corresponding to three involved wavelengths, i.e., anti-Stokes, pump, and Stokes, are localized at the same spatial position. These findings yield valuable insight into the plasmonic substrate design for SECARS applications as well as for other nonlinear optical processes, such as four-wave mixing and multi-photon surface spectroscopy.
RESUMO
We propose an axisymmetric silicon nanoresonator with designed tapered angle well for the extraordinary enhancement of the decay rate of magnetic dipole (MD) emitters. Due to the resonant coupling of a MD emitter and the MD mode of the subwavelength resonator, the Purcell factor (PF) can easily reach 500, which is significantly higher than the PF when using a silicon nanosphere of the same size. The PF and the resonance frequency are conveniently tuned through the resonator diameter and the taper angle of the blind hole. When supported by a metallic substrate, further enhancement ([Formula: see text]) of the MD spontaneous emission is triggered by an image-induced quadrupolar high-Q mode of the nanoantenna. For the sake of comparison we include a critical analysis of the canonical problem that considers a Si spherical shell. Our results might facilitate a novel strategy for promising realizations of chip-scale nanophotonic applications.
RESUMO
Manipulation of the exciton emission rate in nanocrystals of lead halide perovskites (LHPs) was demonstrated by means of coupling of excitons with a hyperbolic metamaterial (HMM) consisting of alternating thin metal (Ag) and dielectric (LiF) layers. Such a coupling is found to induce an increase of the exciton radiative recombination rate by more than a factor of three due to the Purcell effect when the distance between the quantum emitter and HMM is nominally as small as 10 nm, which coincides well with the results of our theoretical analysis. Besides, an effect of the coupling-induced long wavelength shift of the exciton emission spectrum is detected and modeled. These results can be of interest for quantum information applications of single emitters on the basis of perovskite nanocrystals with high photon emission rates.